Precise Point Positioning(PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring.As atmospheric rean...Precise Point Positioning(PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring.As atmospheric reanalysis data products’ accuracy and spatiotemporal resolution have improved recently, it has become important to apply these products to obtain high-accuracy tropospheric delay parameters, like zenith tropospheric delay(ZTD) and tropospheric horizontal gradient. These tropospheric delay parameters can be applied to PPP to reduce the convergence time and to increase the accuracy in the vertical direction of the position. The European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5) atmospheric reanalysis data is the latest product with a high spatiotemporal resolution released by the European Center for Medium-Range Weather Forecasts(ECMWF). Only a few researches have evaluated the application of ERA5 data to Global Navigation Satellite System(GNSS)PPP. Therefore, this study compared and validated the ZTD products derived from ERA5 data using ZTD values provided by 290 global International GNSS Service(IGS) stations for 2016-2017. The results indicated a stable performance for ZTD, with annual average bias and RMS values of 0.23 cm and 1.09 cm,respectively. Further, GNSS observations for one week in each of the four seasons(spring: DOY 92-98;summer: DOY 199-205;autumn: DOY 275-281;and winter: DOY 22-28) from 34 multi-GNSS experiments(MGEX) stations distributed globally in 2016 were considered to evaluate the performance of ERA5-derived tropospheric delay products in GNSS PPP. The performance of ERA5-enhanced PPP was compared with that of the two standard GNSS PPP schemes(without estimated tropospheric horizontal gradient and with estimated tropospheric horizontal gradient). The results demonstrated that ERA5-enhanced GNSS PPP showed no significant improvement in the convergence times in both the Eastern(E) and Northern(N) directions, while the average convergence time over four weeks in the vertical(U)direction improved by 53.3% and 52.7%, respectively(in the case of pngm station). The average convergence times for each week in the U direction of the northern and southern hemisphere stations indicated a decrease of 16.3%, 12.6%, 9.6%, and 9.1%, and 16.9%, 9.6%, 8.9%, and 14.5%, respectively.Regarding positioning accuracy, ERA5-enhanced PPP showed an improvement of 13.3% and 16.2% over the two standard PPP schemes in the U direction, respectively. No significant improvement in the positioning performance was observed in both the E and N directions. Thus, this study demonstrated the potential application of the ERA5 tropospheric parameters-augmented approach to Beidou navigation and positioning.展开更多
Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method an...Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc.展开更多
A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of l...A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.展开更多
Combining the observation data from five Multi-GNSS Experiment(MGEX)stations with the precise orbit and clock products from Global Positioning System(GPS)and BeiDou Navigation Satellite System(BDS),we studied the mode...Combining the observation data from five Multi-GNSS Experiment(MGEX)stations with the precise orbit and clock products from Global Positioning System(GPS)and BeiDou Navigation Satellite System(BDS),we studied the model of combined GPS/BDS precise point positioning,and then analyzed the convergence speed and short-time(6 h)positioning accuracy.The calculation results show that in static positioning,the average convergence time of GPS is about 50 min,and its horizontal accuracy is better than 2 cm while the vertical accuracy is better than 4 cm.The convergence speed of combined GPS/BDS is about 40 min,and its positioning accuracy is close to that of GPS.In kinematic positioning,the average convergence time of GPS is about 72 min,and its horizontal accuracy is better than 5 cm while the vertical accuracy is better than 12 cm.The average convergence time of GPS/BDS is about 57 min,and its horizontal accuracy is better than 3 cm while the vertical accuracy is better than 9 cm.Combined GPS/BDS has significantly improved the convergence speed,and its positioning accuracy is slightly than that of GPS.展开更多
Precise point positioning (PPP)-based deformation monitoring scheme is presented for the use in mining deformation monitoring. Within the solutions of daily observation, outliers are detected and removed to avoid any ...Precise point positioning (PPP)-based deformation monitoring scheme is presented for the use in mining deformation monitoring. Within the solutions of daily observation, outliers are detected and removed to avoid any potential misinterpretation of the results and then the deformation can be extracted by the coordinate differences between the two consecutive solutions. Meanwhile, because of the special location of a rover station in mining areas, the satellite geometry may be insufficient for a reasonable PPP solution, and the multipath impact an also be significant. Therefore, it is necessary to predict the satellite geometry before any daily observation. To evaluate the ability of extracting the deformation using the PPP-based method, various quality measures were introduced. The results of three datasets of the same station show that the precision of deformation monitored by PPP can reach up to cm level and even mm level.展开更多
The measurement of atmospheric water vapor (WV) content and variability is important for meteorological and climatological research. A technique for the remote sensing of atmospheric WV content using ground-based Gl...The measurement of atmospheric water vapor (WV) content and variability is important for meteorological and climatological research. A technique for the remote sensing of atmospheric WV content using ground-based Global Positioning System (GPS) has become available, which can routinely achieve accuracies for integrated WV content of 1-2 kg/m2. Some experimental work has shown that the accuracy of WV measurements from a moving platform is comparable to that of (static) land-based receivers. Extending this technique into the marine environment on a moving platform would be greatly beneficial for many aspects of meteorological research, such as the calibration of satellite data, investigation of the air-sea interface, as well as forecasting and climatological studies. In this study, kinematic precise point positioning has been developed to investigate WV in the Arctic Ocean (80°-87°N) and annual variations are obtained for 2008 and 2012 that are identical to those related to the enhanced greenhouse effect.展开更多
This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes sig...This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes signal to noise ratio(SNR), multipath(MP), dilution of precision(DOP), and code-minus-carrier combination(CC). The results show that, 5 to 13 satellites are visible at any time in the Arctic Ocean area as of September 2018, which are sufficient for positioning. In the mid-latitude oceanic region and in the Arctic Ocean, the SNR is 25–52 dB Hz and the MP ranges from-2 m to 2 m. As the latitude increases, the DOP values show large variation, which may be related to the distribution of BDS satellites. The CC values of signals B1 I and BIC range from-5 m to 5 m in the mid-latitude sea area and the Arctic Ocean, which means the effect of pseudorange noise is small. Moreover, as to obtain the external precise reference value for GNSS positioning in the Arctic Ocean region is difficult, it is hard to evaluate the accuracy of positioning results. An improved isotropy-based protection level method based on Receiver Autonomous Integrity Monitoring is proposed in the paper, which adopts median filter to smooth the gross errors to assess the precision and reliability of PPP in the Arctic Ocean. At first, the improved algorithm is verified with the data from the International GNSS Service Station Tixi. Then the accuracy of BDS3 PPP in the Arctic Ocean is calculated based on the improved algorithm. Which shows that the kinematic accuracy of PPP can reach the decimeter level in both the horizontal and vertical directions, and it meets the precision requirements of maritime navigation.展开更多
With emergence of the BeiDou Navigation Satellite System(BDS), the Galileo Satellite Navigation System(Galileo), the Quasi-Zenith Satellite System(QZSS)and the restoration of the Global Navigation Satellite System(GLO...With emergence of the BeiDou Navigation Satellite System(BDS), the Galileo Satellite Navigation System(Galileo), the Quasi-Zenith Satellite System(QZSS)and the restoration of the Global Navigation Satellite System(GLONASS), the single Global Positioning System(GPS) has been gradually expanded into multiple global and regional navigation satellite systems(multi-GNSS/RNSS). In view of differences in these 5 systems, a consolidated multi-GNSS/RNSS precise point positioning(PPP) observation model is deduced in this contribution. In addition, the performance evaluation of PPP for multi-GNSS/RNSS is conducted using a large number of the multi-GNSS experiment(MGEX) station datasets. Experimental results show that multi-GNSS/RNSS can guarantee plenty of visible satellites effectively. Compared with single-system GPS, PDOP, HDOP, and VDOP values of the multi-GNSS/RNSS are improved by 46.8%, 46.5% and 46.3%, respectively. As for convergence time, the static and kinematic PPP of multi-GNSS/RNSS are superior to that of the single-system GPS, whose reliability, availability, and stability drop sharply with the increasing elevation cutoff. At satellite elevation cutoff of 40 °, the single-system GPS fails to carry out continuous positioning because of the insufficient visible satellites, while the multi-GNSS/RNSS PPP can still get positioning solutions with relatively high accuracy, especially in the horizontal direction.展开更多
In single-frequency precise-point positioning of a satellite,ionosphere delay is one of the most important factors impacting the accuracy. Because of the instability of the ionosphere and uncertainty of its physical p...In single-frequency precise-point positioning of a satellite,ionosphere delay is one of the most important factors impacting the accuracy. Because of the instability of the ionosphere and uncertainty of its physical properties, the positioning accuracy is seriously limited when using a precision-limited model for correction. In order to reduce the error, we propose to introduce some ionosphere parameter for real-time ionosphere-delay estimation by applying various mapping functions. Through calculation with data from the IGS( International GPS Service) tracking station and comparison among results of using several different models and mapping functions, the feasibility and effectiveness of the new method are verified.展开更多
GPS signals are electromagnetic waves that are affected by the Earth’s atmosphere. The Earth’s atmosphere can be categorized, according to its effect on GPS signals, into the ionosphere (ionospheric delay) and neutr...GPS signals are electromagnetic waves that are affected by the Earth’s atmosphere. The Earth’s atmosphere can be categorized, according to its effect on GPS signals, into the ionosphere (ionospheric delay) and neutral atmosphere (tropospheric delay). The first-order ionospheric delay can be eliminated by linear combination of GPS observables on different frequencies. However, tropospheric delay cannot be eliminated because it is frequency-independent. The total tropospheric delay can be divided into three components. The first is the dry component, the second part is the wet component, and the third part is the horizontal gradients which account for the azimuthal dependence of tropospheric delay. In this paper, the effect of modeling tropospheric gradients on the estimation of the total tropospheric delay and station position is investigated. Long session, one month during January 2015, of GPS data is collected from ten randomly selected globally distributed IGS stations. Two cases are studied: the first case, the coordinates of stations are kept fixed to their actual values and the tropospheric delay is estimated twice, with and without tropospheric gradients. In the second case, the station position is estimated along with the total tropospheric delay with and without tropospheric gradients. It is shown that the average bias of the estimated total tropospheric delay when neglecting tropospheric gradients ranges from ?1.72 mm to 2.14 mm while the average bias when estimating gradients are ?0.898 mm to 1.92 mm which means that the bias is reduced by about 30%. In addition, the average standard deviation of the bias is 4.26 mm compared with 4.52 mm which means that the standard deviation is improved by about 6%.展开更多
To identify the endemic error of the precise point positioning which cannot be weakened or eliminated in precise point positioning (PPP) zero-difference model, the 24 h observation data acquired from CHAN station on O...To identify the endemic error of the precise point positioning which cannot be weakened or eliminated in precise point positioning (PPP) zero-difference model, the 24 h observation data acquired from CHAN station on Oct 31st, 2010, were adopted for analyses, different correction models of various errors were discussed and their influences on traditional zero-difference model were analyzed. The results show that the errors cannot be ignored. They must be corrected with suitable models and estimated with auxiliary parameters. The influence magnitudes of all errors are defined, and the results have guiding significance to improve the accuracy of precise point positioning zero-difference model.展开更多
The precise point positioning (PPP) technology is applied to an airborne gravity survey. By analyzing the advantages and disadvantages of several velocity and acceleration measurement methods and in combination with...The precise point positioning (PPP) technology is applied to an airborne gravity survey. By analyzing the advantages and disadvantages of several velocity and acceleration measurement methods and in combination with an actual marine gravity survey, the position difference method is confirmed to be a useful survey method for velocity and acceleration. Finally, the practicability of using PPP in airborne marine gravity survey is verified by measured data.展开更多
This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was...This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was carried out on a lake dam in?orum City of Turkey.While the kinematic test was continuing,the real-time PPP coordinates were obtained for each measurement epoch with a commercial real-time PPP(RT-PPP)service,namely the Trimble Center Point RTX.Then the post-mission PPP(PM-PPP)coordinates were calculated by using Multi-GNSS data and the Multi-GNSS Experiment(MGEX)precise products.The kinematic RT-PPP and PM-PPP results showed that the PPP coordinates were consistent with the relative solution at centimetre and decimetre level in horizontal and height components,respectively.This study implies that PPP technique is a powerful tool for highly accurate positioning in both real-time and post-mission modes,even for dynamic applications in harsh environments.展开更多
The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the...The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the combination of PPP with only the BeiDou Navigation Satellite System(BDS).However,the Inter-System Bias(ISB)measurement of Multi-GNSS,including the time system offset,the coordinate system difference,and the inter-system hardware delay bias,must be considered for Multi-GNSS data fusion processing.The detected ISB can be well modeled and predicted by using a quadratic model(QM),an autoregressive integrated moving average model(ARIMA),as well as the sliding window strategy(SW).In this study,the experimental results indicate that there is no apparent difference in the ISB between BDS-2 and BDS-3 observations if B1I/B3I signals are used.However,an obvious difference in ISB can be found between BDS-2 and BDS-3 observations if B1I/B3I and B1C/B2a signals are used.Meanwhile,the precision of the Predicted ISB(PISB)on the next day of all stations is about 0.1−0.6 ns.Besides,to effectively utilize the PISB,a new strategy for predicting the PISB for MGPPP is proposed.In the proposed strategy,the PISB is used by adding two virtual observation equations,and an adaptive factor is adopted to balance the contribution of the Observed ISB(OISB)and the PISB to the final estimations of ISB.To validate the effectiveness of the proposed method,some experimental schemes are designed and tested under different satellite availability conditions.The results indicate that in open sky environment,the selective utilization of the PISB achieves almost the same positioning precision of MGPPP as the direct utilization of the PISB,but the convergence time of MGPPP is reduced by 7.1%at most in the north(N),east(E),and up(U)components.In the blocked sky environment,the selective utilization of the PISB contributes to more significant improvement of the positioning precision and convergence time than that in the open sky environment.Compared with the direct utilization of the PISB,the selective utilization of the PISB improves the positioning precision and convergence time by 6.7%and 12.7%at most in the N,E,and U components,respectively.展开更多
基金funded by the National Natural Foundation of China (Grant No.4170402741864002)+2 种基金the Guangxi Natural Science Foundation of China (2020GXNSFBA297145)the “Ba Gui Scholars” program of the provincial government of Guangxithe Innovation Project of Guangxi Graduate Education (Grant No. YCSW20211209)
文摘Precise Point Positioning(PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring.As atmospheric reanalysis data products’ accuracy and spatiotemporal resolution have improved recently, it has become important to apply these products to obtain high-accuracy tropospheric delay parameters, like zenith tropospheric delay(ZTD) and tropospheric horizontal gradient. These tropospheric delay parameters can be applied to PPP to reduce the convergence time and to increase the accuracy in the vertical direction of the position. The European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5) atmospheric reanalysis data is the latest product with a high spatiotemporal resolution released by the European Center for Medium-Range Weather Forecasts(ECMWF). Only a few researches have evaluated the application of ERA5 data to Global Navigation Satellite System(GNSS)PPP. Therefore, this study compared and validated the ZTD products derived from ERA5 data using ZTD values provided by 290 global International GNSS Service(IGS) stations for 2016-2017. The results indicated a stable performance for ZTD, with annual average bias and RMS values of 0.23 cm and 1.09 cm,respectively. Further, GNSS observations for one week in each of the four seasons(spring: DOY 92-98;summer: DOY 199-205;autumn: DOY 275-281;and winter: DOY 22-28) from 34 multi-GNSS experiments(MGEX) stations distributed globally in 2016 were considered to evaluate the performance of ERA5-derived tropospheric delay products in GNSS PPP. The performance of ERA5-enhanced PPP was compared with that of the two standard GNSS PPP schemes(without estimated tropospheric horizontal gradient and with estimated tropospheric horizontal gradient). The results demonstrated that ERA5-enhanced GNSS PPP showed no significant improvement in the convergence times in both the Eastern(E) and Northern(N) directions, while the average convergence time over four weeks in the vertical(U)direction improved by 53.3% and 52.7%, respectively(in the case of pngm station). The average convergence times for each week in the U direction of the northern and southern hemisphere stations indicated a decrease of 16.3%, 12.6%, 9.6%, and 9.1%, and 16.9%, 9.6%, 8.9%, and 14.5%, respectively.Regarding positioning accuracy, ERA5-enhanced PPP showed an improvement of 13.3% and 16.2% over the two standard PPP schemes in the U direction, respectively. No significant improvement in the positioning performance was observed in both the E and N directions. Thus, this study demonstrated the potential application of the ERA5 tropospheric parameters-augmented approach to Beidou navigation and positioning.
基金supported partially by the National Natural Science Foundation of China(No.40974004 and 40974016)the Key Laboratory of Surveying and Mapping Technology on Island and Reef of NASMG,China(No.2011A01)the Key Laboratory of Advanced Surveying Engineering of NASMG,China(No.TJES1101)
文摘Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc.
基金Project(41004011)supported by the National Natural Science Foundation of ChinaProject(2014M550425)supported by the China Postdoctoral Science Foundation
文摘A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.
基金supported by Director Foundation of the Institute of Seismology,China Earthquake Administration(6110).
文摘Combining the observation data from five Multi-GNSS Experiment(MGEX)stations with the precise orbit and clock products from Global Positioning System(GPS)and BeiDou Navigation Satellite System(BDS),we studied the model of combined GPS/BDS precise point positioning,and then analyzed the convergence speed and short-time(6 h)positioning accuracy.The calculation results show that in static positioning,the average convergence time of GPS is about 50 min,and its horizontal accuracy is better than 2 cm while the vertical accuracy is better than 4 cm.The convergence speed of combined GPS/BDS is about 40 min,and its positioning accuracy is close to that of GPS.In kinematic positioning,the average convergence time of GPS is about 72 min,and its horizontal accuracy is better than 5 cm while the vertical accuracy is better than 12 cm.The average convergence time of GPS/BDS is about 57 min,and its horizontal accuracy is better than 3 cm while the vertical accuracy is better than 9 cm.Combined GPS/BDS has significantly improved the convergence speed,and its positioning accuracy is slightly than that of GPS.
基金Projects(40904004,41074010)supported by the National Natural Science Foundation of ChinaProject(BK2009099)supported by the Natural Science Fund of Jiangsu Province,China+2 种基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProjects(200802901516,200802900501)supported by the Ph.D.Programs Foundation of Ministry of Education of ChinaProject supported by the Qing Lan Project of Jiangsu Province,China
文摘Precise point positioning (PPP)-based deformation monitoring scheme is presented for the use in mining deformation monitoring. Within the solutions of daily observation, outliers are detected and removed to avoid any potential misinterpretation of the results and then the deformation can be extracted by the coordinate differences between the two consecutive solutions. Meanwhile, because of the special location of a rover station in mining areas, the satellite geometry may be insufficient for a reasonable PPP solution, and the multipath impact an also be significant. Therefore, it is necessary to predict the satellite geometry before any daily observation. To evaluate the ability of extracting the deformation using the PPP-based method, various quality measures were introduced. The results of three datasets of the same station show that the precision of deformation monitored by PPP can reach up to cm level and even mm level.
基金Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract Nos CHINARE2013-03-03 and CHINARE 2013-04-03the National Oceanic Commonweal Research Project under contract No.201105001the National Natural Science Foundation of China under contract No.41374043
文摘The measurement of atmospheric water vapor (WV) content and variability is important for meteorological and climatological research. A technique for the remote sensing of atmospheric WV content using ground-based Global Positioning System (GPS) has become available, which can routinely achieve accuracies for integrated WV content of 1-2 kg/m2. Some experimental work has shown that the accuracy of WV measurements from a moving platform is comparable to that of (static) land-based receivers. Extending this technique into the marine environment on a moving platform would be greatly beneficial for many aspects of meteorological research, such as the calibration of satellite data, investigation of the air-sea interface, as well as forecasting and climatological studies. In this study, kinematic precise point positioning has been developed to investigate WV in the Arctic Ocean (80°-87°N) and annual variations are obtained for 2008 and 2012 that are identical to those related to the enhanced greenhouse effect.
基金The Science and Technology of Henan Province under contract No.212102310029the National Natural Science Founation Cultivation Project of Xuchang University under contract No.2022GJPY007the Educational Teaching Research and Practice Project of Xuchang University under contract No.XCU2021-YB-024.
文摘This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes signal to noise ratio(SNR), multipath(MP), dilution of precision(DOP), and code-minus-carrier combination(CC). The results show that, 5 to 13 satellites are visible at any time in the Arctic Ocean area as of September 2018, which are sufficient for positioning. In the mid-latitude oceanic region and in the Arctic Ocean, the SNR is 25–52 dB Hz and the MP ranges from-2 m to 2 m. As the latitude increases, the DOP values show large variation, which may be related to the distribution of BDS satellites. The CC values of signals B1 I and BIC range from-5 m to 5 m in the mid-latitude sea area and the Arctic Ocean, which means the effect of pseudorange noise is small. Moreover, as to obtain the external precise reference value for GNSS positioning in the Arctic Ocean region is difficult, it is hard to evaluate the accuracy of positioning results. An improved isotropy-based protection level method based on Receiver Autonomous Integrity Monitoring is proposed in the paper, which adopts median filter to smooth the gross errors to assess the precision and reliability of PPP in the Arctic Ocean. At first, the improved algorithm is verified with the data from the International GNSS Service Station Tixi. Then the accuracy of BDS3 PPP in the Arctic Ocean is calculated based on the improved algorithm. Which shows that the kinematic accuracy of PPP can reach the decimeter level in both the horizontal and vertical directions, and it meets the precision requirements of maritime navigation.
基金Supported by the National Natural Science Foundation of China (No. 41604018)the Fundamental Research Funds for the Central Universities(No. 2019B17514)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province (No. nos. sjky19_05132019B60114)
文摘With emergence of the BeiDou Navigation Satellite System(BDS), the Galileo Satellite Navigation System(Galileo), the Quasi-Zenith Satellite System(QZSS)and the restoration of the Global Navigation Satellite System(GLONASS), the single Global Positioning System(GPS) has been gradually expanded into multiple global and regional navigation satellite systems(multi-GNSS/RNSS). In view of differences in these 5 systems, a consolidated multi-GNSS/RNSS precise point positioning(PPP) observation model is deduced in this contribution. In addition, the performance evaluation of PPP for multi-GNSS/RNSS is conducted using a large number of the multi-GNSS experiment(MGEX) station datasets. Experimental results show that multi-GNSS/RNSS can guarantee plenty of visible satellites effectively. Compared with single-system GPS, PDOP, HDOP, and VDOP values of the multi-GNSS/RNSS are improved by 46.8%, 46.5% and 46.3%, respectively. As for convergence time, the static and kinematic PPP of multi-GNSS/RNSS are superior to that of the single-system GPS, whose reliability, availability, and stability drop sharply with the increasing elevation cutoff. At satellite elevation cutoff of 40 °, the single-system GPS fails to carry out continuous positioning because of the insufficient visible satellites, while the multi-GNSS/RNSS PPP can still get positioning solutions with relatively high accuracy, especially in the horizontal direction.
基金supported by the National Natural Science Foundation of China(40902081,40774001,40841021)
文摘In single-frequency precise-point positioning of a satellite,ionosphere delay is one of the most important factors impacting the accuracy. Because of the instability of the ionosphere and uncertainty of its physical properties, the positioning accuracy is seriously limited when using a precision-limited model for correction. In order to reduce the error, we propose to introduce some ionosphere parameter for real-time ionosphere-delay estimation by applying various mapping functions. Through calculation with data from the IGS( International GPS Service) tracking station and comparison among results of using several different models and mapping functions, the feasibility and effectiveness of the new method are verified.
文摘GPS signals are electromagnetic waves that are affected by the Earth’s atmosphere. The Earth’s atmosphere can be categorized, according to its effect on GPS signals, into the ionosphere (ionospheric delay) and neutral atmosphere (tropospheric delay). The first-order ionospheric delay can be eliminated by linear combination of GPS observables on different frequencies. However, tropospheric delay cannot be eliminated because it is frequency-independent. The total tropospheric delay can be divided into three components. The first is the dry component, the second part is the wet component, and the third part is the horizontal gradients which account for the azimuthal dependence of tropospheric delay. In this paper, the effect of modeling tropospheric gradients on the estimation of the total tropospheric delay and station position is investigated. Long session, one month during January 2015, of GPS data is collected from ten randomly selected globally distributed IGS stations. Two cases are studied: the first case, the coordinates of stations are kept fixed to their actual values and the tropospheric delay is estimated twice, with and without tropospheric gradients. In the second case, the station position is estimated along with the total tropospheric delay with and without tropospheric gradients. It is shown that the average bias of the estimated total tropospheric delay when neglecting tropospheric gradients ranges from ?1.72 mm to 2.14 mm while the average bias when estimating gradients are ?0.898 mm to 1.92 mm which means that the bias is reduced by about 30%. In addition, the average standard deviation of the bias is 4.26 mm compared with 4.52 mm which means that the standard deviation is improved by about 6%.
基金Project(20060417004)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(2009S049)supported by the Liaoning Province University Research Program,China
文摘To identify the endemic error of the precise point positioning which cannot be weakened or eliminated in precise point positioning (PPP) zero-difference model, the 24 h observation data acquired from CHAN station on Oct 31st, 2010, were adopted for analyses, different correction models of various errors were discussed and their influences on traditional zero-difference model were analyzed. The results show that the errors cannot be ignored. They must be corrected with suitable models and estimated with auxiliary parameters. The influence magnitudes of all errors are defined, and the results have guiding significance to improve the accuracy of precise point positioning zero-difference model.
文摘The precise point positioning (PPP) technology is applied to an airborne gravity survey. By analyzing the advantages and disadvantages of several velocity and acceleration measurement methods and in combination with an actual marine gravity survey, the position difference method is confirmed to be a useful survey method for velocity and acceleration. Finally, the practicability of using PPP in airborne marine gravity survey is verified by measured data.
文摘This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was carried out on a lake dam in?orum City of Turkey.While the kinematic test was continuing,the real-time PPP coordinates were obtained for each measurement epoch with a commercial real-time PPP(RT-PPP)service,namely the Trimble Center Point RTX.Then the post-mission PPP(PM-PPP)coordinates were calculated by using Multi-GNSS data and the Multi-GNSS Experiment(MGEX)precise products.The kinematic RT-PPP and PM-PPP results showed that the PPP coordinates were consistent with the relative solution at centimetre and decimetre level in horizontal and height components,respectively.This study implies that PPP technique is a powerful tool for highly accurate positioning in both real-time and post-mission modes,even for dynamic applications in harsh environments.
基金supported by“The National Key Research and Development Program of China(No.2020YFA0713502)”“The National Natural Science Foundation of China(No.41874039)”+1 种基金“Jiangsu National Science Foundation(No.BK20191342)”“Fundamental Research Funds for the Central Universities(No.2019ZDPY-RH03)”。
文摘The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the combination of PPP with only the BeiDou Navigation Satellite System(BDS).However,the Inter-System Bias(ISB)measurement of Multi-GNSS,including the time system offset,the coordinate system difference,and the inter-system hardware delay bias,must be considered for Multi-GNSS data fusion processing.The detected ISB can be well modeled and predicted by using a quadratic model(QM),an autoregressive integrated moving average model(ARIMA),as well as the sliding window strategy(SW).In this study,the experimental results indicate that there is no apparent difference in the ISB between BDS-2 and BDS-3 observations if B1I/B3I signals are used.However,an obvious difference in ISB can be found between BDS-2 and BDS-3 observations if B1I/B3I and B1C/B2a signals are used.Meanwhile,the precision of the Predicted ISB(PISB)on the next day of all stations is about 0.1−0.6 ns.Besides,to effectively utilize the PISB,a new strategy for predicting the PISB for MGPPP is proposed.In the proposed strategy,the PISB is used by adding two virtual observation equations,and an adaptive factor is adopted to balance the contribution of the Observed ISB(OISB)and the PISB to the final estimations of ISB.To validate the effectiveness of the proposed method,some experimental schemes are designed and tested under different satellite availability conditions.The results indicate that in open sky environment,the selective utilization of the PISB achieves almost the same positioning precision of MGPPP as the direct utilization of the PISB,but the convergence time of MGPPP is reduced by 7.1%at most in the north(N),east(E),and up(U)components.In the blocked sky environment,the selective utilization of the PISB contributes to more significant improvement of the positioning precision and convergence time than that in the open sky environment.Compared with the direct utilization of the PISB,the selective utilization of the PISB improves the positioning precision and convergence time by 6.7%and 12.7%at most in the N,E,and U components,respectively.