期刊文献+
共找到4,341篇文章
< 1 2 218 >
每页显示 20 50 100
Effect of sintering temperature and holding time on structure and properties of Li_(1.5)Ga_(0.5)Ti_(1.5)(PO_4)_(3)electrolyte with fast ionic conductivity
1
作者 Yin-yi LUO Hao-zhang LIANG +6 位作者 Ping ZHANG Lei HAN Qian ZHANG Li-dan LIU Zhi-wei LUO Tian-xiang NING An-xian LU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2959-2971,共13页
Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explo... Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte. 展开更多
关键词 sintering temperature holding time CONDUCTIVITY cracks solid-state electrolyte
下载PDF
Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Nanocrystalline Cemented Carbide
2
作者 陈先富 刘颖 +1 位作者 YE Jinwen WANG Lu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期664-672,共9页
WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravi... WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30. 展开更多
关键词 nano nitrogen cemented carbide sintering temperature MICROSTRUCTURE mechanical properties
下载PDF
Effect of sintering temperature on microstructure and properties of 3D printing polysilazane reinforced Al_(2)O_(3)core
3
作者 Wen-jun Dong Qiao-lei Li +5 位作者 Tian-ci Chen Ming-ke Zou Jing-jing Liang Li-rong Liu Hui Mei Jin-guo Li 《China Foundry》 SCIE CAS CSCD 2023年第5期387-394,共8页
Ceramic cores are the key intermediate components of hollow blades for aero-engine.Conventional processes,such as hot-press molding and gel film casting,face difficulties in fabricating complex-structured ceramic core... Ceramic cores are the key intermediate components of hollow blades for aero-engine.Conventional processes,such as hot-press molding and gel film casting,face difficulties in fabricating complex-structured ceramic cores due to the complexity of moulds and long process cycles.Stereolithography 3D printing provides a new idea for the fabrication of complex-structured ceramic cores.The effect of sintering temperature on open porosity,bulk density,weight loss rate,shrinkage rate,flexural strength and microstructure of the Al_(2)O_(3)-based ceramic core doped with 10vol.%polysilazane(PSZ)was studied.The sintering mechanism of PSZ-reinforced ceramic cores was analyzed.Results show that the optimum sintering temperature of PSZ-reinforced ceramic cores is 1,450°C.At this temperature,the open porosity of the ceramic core is 36.60%,bulk density is 2.33 g·cm^(-3),weight loss rate is 22.11%,shrinkage rate along the X,Y,Z directions is 5.72%,5.01%,9.61%,respectively;the flexural strength is 28.794 MPa at 25°C and 13.649 MPa at 1,500°C.Properties of 3D printing PSZ-reinforced ceramic cores can meet the casting requirement of superalloy hollow blades,which is expected to promote the industrial application of 3D printing complex structure ceramic cores. 展开更多
关键词 investment casting ceramic core 3D printing sintering temperature flexural strength
下载PDF
Low temperature solid-phase sintering of sintered metal fibrous media with high specific surface area 被引量:4
4
作者 唐彪 汤勇 +3 位作者 周蕤 陆龙生 刘彬 屈修明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1755-1760,共6页
A procedure of low temperature solid-phase sintering(LTSS) was carried out to fabricate sintered metal fibrous media(SMFM) with high specific surface area.Stainless steel fibers which were produced by cutting proc... A procedure of low temperature solid-phase sintering(LTSS) was carried out to fabricate sintered metal fibrous media(SMFM) with high specific surface area.Stainless steel fibers which were produced by cutting process were first plated with a coarse copper coating layer by electroless plating process.A low-temperature sintering process was then completed at about 800 °C for 1 h under the protection of hydrogen atmosphere.The results show that a novel SMFM with complex surface morphology and high specific surface area(0.2 m2/g) can be obtained in this way.The effect of sintering temperature on the surface morphology and specific surface area of SMFM was studied by means of scanning electron microscopy and Brunauer-Emmett-Teller.The damage of micro-structure during the sintering process mainly contributed to the loss of specific surface area of SMFM and the optimal sintering temperature was 800 °C. 展开更多
关键词 sintered metal fibrous media low temperature solid-phase sintering electroless copper plating surface morphology specific surface area
下载PDF
NUMERICAL SIMULATIONS OF TEMPERATURE FIELD IN DIRECT METAL LASER SINTERING PROCESS 被引量:6
5
作者 顾冬冬 沈以赴 +2 位作者 刘满仓 潘琰峰 胥橙庭 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期225-233,共9页
A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radia... A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radiation, and convection. A formula for the calculation of the heat conductivity of a sintering system containing solid phase, liquid phase, and gas phase is given. Due to the continuous movement of the laser beam, a local coordinate system centered on the laser beam is used to simplify the analytical calculation. Assuming that it is approximately a Gaussian laser beam, the heat conduction equation is resolved based on the assumption of the thermal insulating boundary conditions and the fixed thermal physical parameters. The FORTRAN language is employed to compile the program to simulate the temperature field in the direct copper powder sintering process. It shows a good agreement with the preliminary experimental results.[KH3/4D] 展开更多
关键词 direct metal laser sintering (DMLS) mathematical model temperature field numerical simulation
下载PDF
Effect of sintering temperature on cycling performance and rate performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 被引量:2
6
作者 李向群 熊训辉 +1 位作者 王志兴 陈启元 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期4023-4029,共7页
LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on th... LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature. 展开更多
关键词 lithium ion battery LiNi0.8CO0.1Mn0.1O2 sintering temperature cycling performance rate performance
下载PDF
Effect of sintering temperature on the physical properties and electrical contact properties of doped AgSnO_2 contact materials 被引量:7
7
作者 Hai-tao Wang Zi-xiang Wang +2 位作者 Lian-zheng Wang Jing-qin Wang Yan-cai Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第11期1275-1285,共11页
AgSnO_ 2 electrical contact materials doped with Bi_2O_3,La_2O_3,and TiO_2 were successfully fabricated by the powder metallurgy method under different initial sintering temperatures.The electrical conductivity,densit... AgSnO_ 2 electrical contact materials doped with Bi_2O_3,La_2O_3,and TiO_2 were successfully fabricated by the powder metallurgy method under different initial sintering temperatures.The electrical conductivity,density,hardness,and contact resistance of the Ag Sn O_2/Bi_2O_3,AgSnO_2/La_2O_3,and AgSnO_2/Ti O_2 contact materials were measured and analyzed.The arc-eroded surface morphologies of the doped AgSnO_2 contact materials were investigated by scanning electron microscopy(SEM).The effects of the initial sintering temperature on the physical properties and electrical contact properties of the doped AgSnO_2 contact materials were discussed.The results indicate that the physical properties can be improved and the contact resistance of the AgSnO_2 contact materials can be substantially reduced when the materials are sintered under their optimal initial sintering temperatures. 展开更多
关键词 sintering temperature CONTACT materials PHYSICAL PROPERTIES electrical CONTACT PROPERTIES
下载PDF
High-temperature performance prediction of iron ore fines and the ore-blending programming problem in sintering 被引量:7
8
作者 Bing-ji Yan Jian-liang Zhang +2 位作者 Hong-wei Guo Ling-kun Chen Wei Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第8期741-747,共7页
The high-temperature performance of iron ore fmes is an important factor in optimizing ore blending in sintering. However, the application of linear regression analysis and the linear combination method in most other ... The high-temperature performance of iron ore fmes is an important factor in optimizing ore blending in sintering. However, the application of linear regression analysis and the linear combination method in most other studies always leads to a large deviation from the desired results. In this study, the fuzzy membership functions of the assimilation ability temperature and the liquid fluidity were proposed based on the fuzzy mathematics theory to construct a model for predicting the high-temperature performance of mixed iron ore. Comparisons of the prediction model and experimental results were presented. The results illustrate that the prediction model is more accurate and effective than previously developed models. In addition, fuzzy constraints for the high-temperature performance of iron ore in this research make the results of ore blending more comparable. A solution for the quantitative calculation as well as the programming of fuzzy constraints is also introduced. 展开更多
关键词 iron ores BLENDING sintering high temperature properties prediction PROGRAMMING
下载PDF
Effect of Temperature on Phase and Alumina Extraction Efficiency of the Product from Sintering Coal Fly Ash with Ammonium Sulfate 被引量:5
9
作者 吴玉胜 徐萍 +2 位作者 陈娇 李来时 李明春 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1363-1367,共5页
A new developed technology for extracting alumina from coal fly ash was studied in this paper. In this technology, coal fly ash is first sintered with ammonium sulfate, forming ammonium aluminum sulfate in the resulta... A new developed technology for extracting alumina from coal fly ash was studied in this paper. In this technology, coal fly ash is first sintered with ammonium sulfate, forming ammonium aluminum sulfate in the resultant product, where alumina can be easily leached without using any strong acid or alkali. The products obtained under different sintering conditions were characterized by X-ray diffractometry. Alumina extraction efficiency of these products was also investigated. The results show that the sintering temperature and time substantially influence the phase composition and alumina extraction efficiency of sintered products, while the heating rate has little influence. The optimal sintering condition is 400 °C for 3 h in air with a heating rate of 6 °C·min-1.Under the optimal sintering condition, the alumina extraction efficiency from as-sintered coal fly ash can reach 85% or more. 展开更多
关键词 Coal FLY ash AMMONIUM SULFATE sintering temperature PHASE ALUMINA extraction efficiency
下载PDF
Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass 被引量:5
10
作者 Chang-hong Chen Ke-qin Feng +1 位作者 Yu Zhou Hong-ling Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第8期931-936,共6页
Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature(900–1060℃) on the micros... Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature(900–1060℃) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060℃. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength(16.64 MPa) among the investigated samples and a relatively low bulk density(0.83 g/cm^3), were attained in the case of the foamed glass-ceramics sintered at 1000℃. 展开更多
关键词 foamed GLASS-CERAMICS sintering temperature BLAST FURNACE SLAG waste glass CRYSTALLIZATION
下载PDF
Low-field magnetoresistance of (1-x)La_(0.6)Dy_(0.1)Sr_(0.3)MnO_3/0.5x (Sb_2O_3) composite system under different sintering temperatures of matrix 被引量:7
11
作者 Yang, Jie Yan, Guoqing +4 位作者 Wang, Guiying Tang, Yonggang Song, Qixiang Zhang, Mingyu Peng, Zhensheng 《Rare Metals》 SCIE EI CAS CSCD 2012年第3期276-280,共5页
A series of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1-x)La0.6D... A series of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x (Sb2O3) was studied through the measurements of X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) image, resistivity-temperature (ρ-T) curves, and magnetoresistance-temperature (MR-T) curves. The results indicate that for the samples with low sintering temperature of the matrix, lowfield magnetoresistance effect appears on the whole temperature range and can be explained by grain boundary effect; for the sample with high sintering temperature of the matrix, intrinsic magnetoresistance peak appears on the high-temperature range, low-field magnetore-sistance effect appears on low temperature range, and the magnetoresistance in the magnetic field of 0.2 T and on the comparatively large temperature range between 280 K and 225 K hardly changes with temperature and remains at 4.8%, which can be explained by the competition between the intrinsic magnetoresistance induced by double-exchange function inside grains and the tunneling magnetoresis-tance (TMR) induced by grain boundary effect. The temperature stability of magnetoresistance is beneficial to the practical applications of MR. 展开更多
关键词 low-field magnetoresistance two-phase composite sintering temperature of the matrix perovskite manganite
下载PDF
Studies on the Influence of Sintering Temperature on Crystalline Structures of Mg-Al Spinel Synthesized by Waste Aluminum Slag 被引量:6
12
作者 于岩 阮玉忠 吴任平 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第6期727-731,共5页
Mg-Al spinel is synthesized by using industrial waste-residue and basic magnesium carbonate in the aluminum factory as the main raw materials. The influence of sintering temperature on crystalline structure and micros... Mg-Al spinel is synthesized by using industrial waste-residue and basic magnesium carbonate in the aluminum factory as the main raw materials. The influence of sintering temperature on crystalline structure and microstructure of Mg-Al spinel has been mainly discussed. The crystalline structure of sample is characterized by using XRD, SEM and relevant analytical software. The experimental results show that compared to the conventional synthetic method, the application of waste aluminum slag as the raw material can greatly decrease the synthetic tem-perature. The content of Mg-Al spinel first increases and then decreases with the rise of sintering temperature, and its purity can reach as high as 96wt% at 1550 ℃, which is therefore determined to be the optimum synthetic temperature. SEM observations demonstrate that as the rise of sintering temperature, the grain of Mg-Al spinel grows up obviously with typical octahedral characteristic appearance. 展开更多
关键词 Mg-Al spinel sintering temperature crystalline structure
下载PDF
Optimization model coupling both chemical compositions and high-temperature characteristics of sintering materials for sintering burden 被引量:4
13
作者 Ke-jiang Li Jian-liang Zhang +3 位作者 Zheng-jian Liu Bu-xin Su Ling-tan Kong Tian-jun Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第3期216-224,共9页
We developed a mathematical optimization model coupling chemical compositions and high-temperature characteristics of sintering materials, targeting the best quality and lowest cost. The simplex algorithm was adopted ... We developed a mathematical optimization model coupling chemical compositions and high-temperature characteristics of sintering materials, targeting the best quality and lowest cost. The simplex algorithm was adopted to solve this model. Four kinds of imported iron ores, two kinds of Chinese iron ore concentrates, and two kinds of fluxes were selected to verify both the model and the algorithm. The results confirmed the possibility of considering both chemical compositions and high-temperature characteristics of iron ores in the optimization model. This model provides a technical roadmap to obtain a precise mathematical correlation between the lowest cost and the grade of iron in sinters based on the condition of given raw materials, which can provide a reference to adjust the grade of iron in the sintering process for enterprise. 展开更多
关键词 sintering BURDEN OPTIMIZATION simplex algorithm chemical composition high temperature properies
下载PDF
Effects of Rare Earth and Hot Pressing Sintering Temperature on the Transverse Rupture Strength of Fe-based Diamond Composites 被引量:5
14
作者 DAI Qiu-lian, LUO Can-ben, XU Xi-peng, WANG Yong-chu (College of Mechanical Engineering & Automation, Huaqiao University, Quanzhou 362011, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期76-77,共2页
Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and ... Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and variance analysis in this paper. It is found that sintering temperature has a significant effect on the TRS of Fe-based diamond composites. The optimal sin tering temperature is 780~860 ℃. On the contrary, the effects of RE additi v es on values of TRS of the diamond composites have on distinct difference no mat ter the RE is in the state of mixture or compound or oxidization. Experimental r esults demonstrate that Fe-based diamond composites with RE additives exhibit h igher TRS, which results in an increase in diamond retention capacity. The degre e of increment of TRS is different at different sintering temperatures. The opti mal amount of rare earth was found to be about 1% in weight. The effect of RE is more significant at lower sintering temperature. The experimental results also reveal that TiH 2 additive has a negative effect on the TRS of Fe-based compos ites. Microscope observations demonstrate that specimen without TiH 2 additives , shows fewer pores and denser structures in the base metal. It can also be seen from the SEM observation of the resulting fracturing surface of bending test sp ecimens that the bonding of the diamond-matrix interface is better in the speci men without TiH 2 than in the specimen with TiH 2. Also the fracture surface o f the specimen without TiH 2 reveals ductile cup and cone behavior. 展开更多
关键词 rare earth sintering temperature transverse rup ture strength diamond impregnated composite
下载PDF
Influence of Composition on Properties of Medium Temperature Sintering (Ba,Sr)TiO_3 Series Capacitor Ceramics 被引量:4
15
作者 黄新友 赵晨 +1 位作者 陈志刚 高春华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第6期777-781,共5页
The influence of the composition (Yb2O3, MgO, CeO2, Li2CO3) on the dielectric properties of medium temperature sintering (Ba, Sr)TiO3 (BST) series capacitor ceramics was investigated by means of conventional tec... The influence of the composition (Yb2O3, MgO, CeO2, Li2CO3) on the dielectric properties of medium temperature sintering (Ba, Sr)TiO3 (BST) series capacitor ceramics was investigated by means of conventional technology process and orthogonal design experiments. The major secondary influencing factors and the influencing tendency of various factor's levels for the dielectric properties of BST ceramics were obtained. The optimum formula for maximum dielectric constant (ε) and for minimum dielectric loss (tanδ) was obtained under the experimental conditions. The BST ceramics with optimum comprehensive properties was obtained by means of orthogonal design experiments, with the sintering temperature at 1200 ℃, the dielectric constant 5239, the dielectric loss 0.0097, withstand electric voltage over 6 MV·m^-1, capacitance temperature changing ence of various components on the providing the basis for preparation rate (△C/C) - 75.67%, and suited for Y5V character. The mechanism of the infludielectric properties of medium temperature sintering BST ceramics was studied, thus of multilayer capacitor ceramics and single-chip capacitor ceramics. 展开更多
关键词 medium temperature sintering YB2O3 ceramic capacitor barium and strontium titanate CERAMICS rare earths
下载PDF
EFFECTS OF In_2O_3 DOPING AND SINTERING TEMPERATURE ON THE ELECTRICAL PROPERTIES OF ZnO VARISTORS 被引量:2
16
作者 Zhao Ruirong Chen Jianxzen Jiang Hanying(Institute of Metallurgical Physicochemistry and Materials, Central SouthUniversity of Technology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 1997年第1期13-15,共3页
ZnO varistors are prepared using the 0.1-0.3mm ZnO powders. The effects of the sintering temperature, contents of In2O3 doping on the non-linear properties of ZnO varistors have been investigated. Theresults show that... ZnO varistors are prepared using the 0.1-0.3mm ZnO powders. The effects of the sintering temperature, contents of In2O3 doping on the non-linear properties of ZnO varistors have been investigated. Theresults show that this kind of ZnO powder has a high sintering activity. It is suitable for making the low voltage varistors. The Vc decreases with the increase of sintered temperature, when the In2O3 content is fixed(0. 98 %, mass fraction), and increases with the increase of In2O3 contents when the temperature is steady. 展开更多
关键词 ZnO varistors In_2O_3-doping sintering temperature
下载PDF
Influence of sintering temperature on the thermoelectric properties of Ba_8Ga_(16)Si_(30) clathrate treated by spark plasma sintering 被引量:1
17
作者 Li-hua Liu Feng Li +3 位作者 Ning Chen Hong-mei Qiu Guo-hui Cao Yang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第1期78-85,共8页
A series of Ba8Ga16Si30 clathrate samples were prepared by arc melting, ball milling, acid washing, and spark plasma sintering (SPS). X-ray diffraction analysis revealed that the lattice of the Ba8Ga16Si30 samples e... A series of Ba8Ga16Si30 clathrate samples were prepared by arc melting, ball milling, acid washing, and spark plasma sintering (SPS). X-ray diffraction analysis revealed that the lattice of the Ba8Ga16Si30 samples expanded as the SPS temperature was increased from 400 to 750℃. Lattice contraction recurred when the SPS temperature was further increased in the range of 750-1000℃. This phenomenon can be explained by the variation of Ga content in the lattice. The thermoelectric figure of the merit ZT value of clathrates increased with the increase in SPS temperature and reached a maximum when the sample was subjected to SPS at 800℃. A further increase in SPS temperature did not contribute to the improvement of ZT. The variation of the lattice parameter a vs. SPS temperature T was similar to the variation ob-served in the ZT-T curve. 展开更多
关键词 clathrate compounds THERMOELECTRICITY sintering temperature spark plasma sintering lattice constants
下载PDF
Modified phase transition and electrical properties of [Li_(0.05)(Na_(0.535)K_(0.48))_(0.95)]- (Nb_(0.94)Sb_(0.06))O_3 lead-free piezoelectric ceramic by sintering temperature 被引量:1
18
作者 Zhao Xiaokun Zhang Boping +3 位作者 Zhao Lei Zhu Lifeng Li Yan Cheng Liqian 《Rare Metals》 SCIE EI CAS CSCD 2012年第6期590-594,共5页
Li/Sb-doped (Na,K)NbO3 with a nominal composition of [Li0.05(Na0.535K0.48)0.95](Nb0.94Sb0.06)O3 ceramic was synthesized by normal sintering. The phase structure, microstructure, and electrical properties were investig... Li/Sb-doped (Na,K)NbO3 with a nominal composition of [Li0.05(Na0.535K0.48)0.95](Nb0.94Sb0.06)O3 ceramic was synthesized by normal sintering. The phase structure, microstructure, and electrical properties were investigated with a special emphasis on the influence of the sintering temperature. A polymorphic phase transition (PPT) from orthorhombic to tetragonal symmetry was observed when the sintering temperature was raised from 1040 to 1050 ℃, whereby the piezoelectric coefficient d33 and the electromechanical coupling coefficient kp reached the peak values of 245 pC·N-1 and 41.2%, respectively. The PPT induced by varying the sintering temperature is due to the different volatilization extents of alkali metals and appears to a lower sintering temperature with increasing Li content. The trace modifying of alkali metal content is more effective than doping B site element to enhance the d33 value. 展开更多
关键词 LEAD-FREE sintering temperature microstructure phase piezoelectric properties piezoelectric ceramic
下载PDF
Effects of nano-AlN on phase transformation of low temperature vitrified bond during sintering process 被引量:1
19
作者 尚勇 侯永改 +3 位作者 乔桂英 邹文俊 肖福仁 廖波 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期706-710,共5页
The effects of nano-AlN and sintering temperature on bending strength and wear resistance of low temperature vitrified bond for diamond grinding tools were studied. Furthermore, the phase transformation during sinteri... The effects of nano-AlN and sintering temperature on bending strength and wear resistance of low temperature vitrified bond for diamond grinding tools were studied. Furthermore, the phase transformation during sintering process was investigated by means of thermo-gravimetric analysis (TG), differential thermal analysis (DTA) and X-ray diffraction (XRD). The results show that the higher bending strength and wear resistance of low temperature vitrified bond are obtained by adding nano-AlN in bonds and sintering at optimum temperature. Nano-AlN added in bonds promotes the crystallization during sintering process and refines the grain sizes of crystalline phase. 展开更多
关键词 low temperature vitrified BOND nano-AlN sintering phase TRANSFORMATION
下载PDF
Effect of Sintering Temperature on Aging Resistance and Mechanical Properties of 3Y-TZP Dental Ceramic 被引量:1
20
作者 张静超 ZHAO Yongqi +3 位作者 LIAO Yunmao JIANG Li YUN Xiaofei 李伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第2期316-320,共5页
In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment, 3Y-TZP nanopowder compacts were pressurelessly sintered... In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment, 3Y-TZP nanopowder compacts were pressurelessly sintered at 1 350℃, 1 400 ℃, 1 450 ℃,1 500 ℃, respectively, then were treated by soaking in artificial saliva (65 ℃, pH=7) for two months. The treated specimens sintered at 1 350 ℃ showed there was no phase transformation but whose strength and toughnesswere significantly improved (P〈0.05), while those sintered at 1 400 ℃- 1 500 ℃ revealed a small amount of phase transformation and insignificant mechanical reinforcement (P〉0.05). No microcracks were detected but increment in lattice volume was found in all specimens. Lowering sintering temperature favors aging resistance and mechanical reinforcement of 3Y-TZP in a simulated oral environment. 展开更多
关键词 3Y-TZP dental ceramic sintering temperature simulated oral environment lowtemperature aging
下载PDF
上一页 1 2 218 下一页 到第
使用帮助 返回顶部