A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error sourc...A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error source in the test of WEP.The result shows that the uncompensated gravity gradient effect from the coupling term of the dominated gravity gradient multipole moment component q_(21) and the relative multipole field component Q_(21) contributes to an uncertainty of 1×10^(-11) on the E otv os parameter. We make a Q_(21) compensation to reduce the effect by about 20 times, and the limit of the test precision due to this coupling is improved to a level of a part in 10^(13).展开更多
The importance of "precise" test values and their verification is growing in every industry throughout the world, lnterlaboratory studies constitute a basis for this. The high expenses and mathematical work required...The importance of "precise" test values and their verification is growing in every industry throughout the world, lnterlaboratory studies constitute a basis for this. The high expenses and mathematical work required to carry out proper interlaboratory studies are frequently considered reasons not to conduct such studies. This makes it all the more important to emphasize the various advantages of an accurate interlaboratory study. In addition to providing precision data for the test method, it is also possible to carry out laboratory evaluations, which is important for accredited test laboratories. Furthermore, existing test methods can be optimized, refer- ence material can be obtained, and test methods can be compared. Optimized test instructions can also be generated using the findings and precision data. These advantages will be described in detail by means of examples below.展开更多
Because of uncertainties involved in modeling, construction, and measurement systems, the assessment of the FE model validation must be conducted based on stochastic mea- surements to provide designers with confidence...Because of uncertainties involved in modeling, construction, and measurement systems, the assessment of the FE model validation must be conducted based on stochastic mea- surements to provide designers with confidence for further applications. In this study, based on the updated model using response surface methodology, a practical model vali- dation methodology via uncertainty propagation is presented. Several criteria of testing/ analysis correlation are introduced, and the sources of model and testing uncertainties are also discussed. After that, Monte Carlo stochastic finite element (FE) method is employed to perform the uncertainty quantification and propagation. The proposed methodology is illustrated with the examination of the validity of a large-span prestressed concrete continuous rigid frame bridge monitored under operational conditions. It can be concluded that the calculated frequencies and vibration modes of the updated FE model of Xiabaishi Bridge are consistent with the measured ones. The relative errors of each frequency are all less than 3.7%. Meanwhile, the overlap ratio indexes of each frequency are all more than 75%; The MAC values of each calculated vibration frequency are all more than 90%. The model of Xiabaishi Bridge is valid in the whole operation space including experimental design space, and its confidence level is upper than 95%. The validated FE model of Xia- baishi Bridge can reflect the current condition of Xiabaishi Bridge, and also can be used as basis of bridge health monitoring, damage identification and safety assessment.展开更多
A cryogenic permanent magnet undulator prototype designed for Chinese High Energy Photon Source Test Facility(HEPSTF)at Institute of High Energy Physics is constructed and now commissioning.Motion precision of girders...A cryogenic permanent magnet undulator prototype designed for Chinese High Energy Photon Source Test Facility(HEPSTF)at Institute of High Energy Physics is constructed and now commissioning.Motion precision of girders is a significant parameter to guarantee gap error so as to avoid phase error and radiation intensity loss.In order to study and minimize girder parallelism errors,RADIA and SPECTRA are used to calculate qualified motion precision.Spring Modules and single motor closed-loop feedback are designed to compensate the errors.Magnetic field is finally tuned to reach specifications.Details of the study and analysis will be presented in this paper.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11575160 and 11605065)
文摘A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error source in the test of WEP.The result shows that the uncompensated gravity gradient effect from the coupling term of the dominated gravity gradient multipole moment component q_(21) and the relative multipole field component Q_(21) contributes to an uncertainty of 1×10^(-11) on the E otv os parameter. We make a Q_(21) compensation to reduce the effect by about 20 times, and the limit of the test precision due to this coupling is improved to a level of a part in 10^(13).
文摘The importance of "precise" test values and their verification is growing in every industry throughout the world, lnterlaboratory studies constitute a basis for this. The high expenses and mathematical work required to carry out proper interlaboratory studies are frequently considered reasons not to conduct such studies. This makes it all the more important to emphasize the various advantages of an accurate interlaboratory study. In addition to providing precision data for the test method, it is also possible to carry out laboratory evaluations, which is important for accredited test laboratories. Furthermore, existing test methods can be optimized, refer- ence material can be obtained, and test methods can be compared. Optimized test instructions can also be generated using the findings and precision data. These advantages will be described in detail by means of examples below.
基金supported by the National Natural Science Foundation of China(No.51178101,51378112)National Scientific and Technological Supporting Plan(No.2011BAK02B03)Scientific Research and Development Foundation of Fujian University of Technology(No.GY-Z10085)
文摘Because of uncertainties involved in modeling, construction, and measurement systems, the assessment of the FE model validation must be conducted based on stochastic mea- surements to provide designers with confidence for further applications. In this study, based on the updated model using response surface methodology, a practical model vali- dation methodology via uncertainty propagation is presented. Several criteria of testing/ analysis correlation are introduced, and the sources of model and testing uncertainties are also discussed. After that, Monte Carlo stochastic finite element (FE) method is employed to perform the uncertainty quantification and propagation. The proposed methodology is illustrated with the examination of the validity of a large-span prestressed concrete continuous rigid frame bridge monitored under operational conditions. It can be concluded that the calculated frequencies and vibration modes of the updated FE model of Xiabaishi Bridge are consistent with the measured ones. The relative errors of each frequency are all less than 3.7%. Meanwhile, the overlap ratio indexes of each frequency are all more than 75%; The MAC values of each calculated vibration frequency are all more than 90%. The model of Xiabaishi Bridge is valid in the whole operation space including experimental design space, and its confidence level is upper than 95%. The validated FE model of Xia- baishi Bridge can reflect the current condition of Xiabaishi Bridge, and also can be used as basis of bridge health monitoring, damage identification and safety assessment.
文摘A cryogenic permanent magnet undulator prototype designed for Chinese High Energy Photon Source Test Facility(HEPSTF)at Institute of High Energy Physics is constructed and now commissioning.Motion precision of girders is a significant parameter to guarantee gap error so as to avoid phase error and radiation intensity loss.In order to study and minimize girder parallelism errors,RADIA and SPECTRA are used to calculate qualified motion precision.Spring Modules and single motor closed-loop feedback are designed to compensate the errors.Magnetic field is finally tuned to reach specifications.Details of the study and analysis will be presented in this paper.