For the constrained nonlinear optimal control problem, by taking the first term of Taylor series, the dynamic equation is linearized. Thus by, introducing into the dual variable (Lagrange multiplier vector), the dynam...For the constrained nonlinear optimal control problem, by taking the first term of Taylor series, the dynamic equation is linearized. Thus by, introducing into the dual variable (Lagrange multiplier vector), the dynamic equation can be transformed into Hamilton system from Lagrange system on the basis of the original variable. Under the whole state, the problem discussed can be described from a new view, and the equation can be precisely solved by, the time precise integration method established in linear dynamic system. A numerical example shows the effectiveness of the method.展开更多
This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order...This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.展开更多
In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from th...In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from the completely square-conservative difference scheme in explicit way is built by means of the Taylor expansion. A numerical test with 4-wave Rossby-Haurwitz waves on them and an application of them on the monthly mean current the of South China Sea are carried out, from which, it is found that not only do the new schemes have high harmony and approximate precision but also can the time step of the schemes be lengthened and can much computational time be saved. Therefore, they are worth generalizing and applying.展开更多
随着计算机性能的不断提高和计算机网络技术的进步,广播电视专业视音频节目的制作、播出逐渐具备了在虚拟化系统中部署的条件,可以在虚拟化平台上构建基于SMPTE ST2110系列标准的播出系统。而精确时间协议(Precision Time Protocol,PTP...随着计算机性能的不断提高和计算机网络技术的进步,广播电视专业视音频节目的制作、播出逐渐具备了在虚拟化系统中部署的条件,可以在虚拟化平台上构建基于SMPTE ST2110系列标准的播出系统。而精确时间协议(Precision Time Protocol,PTP)时间同步在基于ST 2110系列标准的播出系统中非常关键。为此,讨论在虚拟化平台上为播出系统各虚拟机实现PTP高精度同步的工具和方法。展开更多
Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA ...Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA structure statistical mechanical model,and time complexity and precision were analyzed on the calculated results.展开更多
Time Sensitive Networking(TSN)will be an integral component of industrial networking.Time synchronization in TSN is provided by the IEEE-1588,Precision Time Protocol(PTP)protocol.The standard,dating back to 2008,margi...Time Sensitive Networking(TSN)will be an integral component of industrial networking.Time synchronization in TSN is provided by the IEEE-1588,Precision Time Protocol(PTP)protocol.The standard,dating back to 2008,marginally addresses security aspects,notably not encompassing the frames designed for management purposes(Type Length Values or TLVs).In this work we show that the TLVs can be abused by an attacker to reconfigure,manipulate,or shut down time synchronization.The effects of such an attack can be serious,ranging from interruption of operations to actual unintended behavior of industrial devices,possibly resulting in physical damages or even harm to operators.The paper analyzes the root causes of this vulnerability,and provides concrete examples of attacks leveraging it to de-synchronize the clocks,showing that they can succeed with limited resources,realistically available to a malicious actor.展开更多
It has been proved recently that the spike timing can play an important role in information transmission, so in this paper we develop a network with N-unlt FitzHugh-Nagumo neurons coupled by gap junctions and discuss ...It has been proved recently that the spike timing can play an important role in information transmission, so in this paper we develop a network with N-unlt FitzHugh-Nagumo neurons coupled by gap junctions and discuss the dependence of the spike timing precision on synaptic coupling strength, the noise intensity and the size of the neuron ensemble. The calculated results show that the spike timing precision decreases as the noise intensity increases; and the ensemble spike timing precision increases with coupling strength increasing. The electric synapse coupling has a more important effect on the spike timing precision than the chemical synapse coupling.展开更多
Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and co...Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.展开更多
The prototype of a time digitizing system for the BESⅢ endcap TOF (ETOF) upgrade is introduced in this paper, The ETOF readout electronics has a distributed architecture. Hit signals from the multi-gap resistive pl...The prototype of a time digitizing system for the BESⅢ endcap TOF (ETOF) upgrade is introduced in this paper, The ETOF readout electronics has a distributed architecture. Hit signals from the multi-gap resistive plate chamber (MRPC) are signaled as LVDS by front-end electronics (FEE) and are then sent to the back-end time digitizing system via long shield differential twisted pair cables. The ETOF digitizing system consists of two VME crates, each of which contains modules for time digitization, clock, trigger, fast control, etc. The time digitizing module (TDIG) of this prototype can support up to 72 electrical channels for hit information measurement. The fast control (FCTL) module can operate in barrel or endcap mode. The barrel FCTL fans out fast control signals from the trigger system to the endcap FCTLs, merges data from the endcaps and then transfers to the trigger system. Without modifying the barrel TOF (BTOF) structure, this time digitizing architecture benefits from improved ETOF performance without degrading the BTOF performance. Lab experiments show that the time resolution of this digitizing system can be lower than 20 ps, and the data throughput to the DAQ can be about 92 Mbps. Beam experiments show that the total time resolution can be lower than 45 ps.展开更多
文摘For the constrained nonlinear optimal control problem, by taking the first term of Taylor series, the dynamic equation is linearized. Thus by, introducing into the dual variable (Lagrange multiplier vector), the dynamic equation can be transformed into Hamilton system from Lagrange system on the basis of the original variable. Under the whole state, the problem discussed can be described from a new view, and the equation can be precisely solved by, the time precise integration method established in linear dynamic system. A numerical example shows the effectiveness of the method.
基金supported by the National Natural Science Foun-dation of China (11172334)
文摘This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.
文摘In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from the completely square-conservative difference scheme in explicit way is built by means of the Taylor expansion. A numerical test with 4-wave Rossby-Haurwitz waves on them and an application of them on the monthly mean current the of South China Sea are carried out, from which, it is found that not only do the new schemes have high harmony and approximate precision but also can the time step of the schemes be lengthened and can much computational time be saved. Therefore, they are worth generalizing and applying.
文摘随着计算机性能的不断提高和计算机网络技术的进步,广播电视专业视音频节目的制作、播出逐渐具备了在虚拟化系统中部署的条件,可以在虚拟化平台上构建基于SMPTE ST2110系列标准的播出系统。而精确时间协议(Precision Time Protocol,PTP)时间同步在基于ST 2110系列标准的播出系统中非常关键。为此,讨论在虚拟化平台上为播出系统各虚拟机实现PTP高精度同步的工具和方法。
基金Supported by Inner Mongolia Natural Science Foundation(200711020112)Innovation Fundation of Inner Mongolia University of Science and Technology (2009NC064)~~
文摘Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA structure statistical mechanical model,and time complexity and precision were analyzed on the calculated results.
文摘Time Sensitive Networking(TSN)will be an integral component of industrial networking.Time synchronization in TSN is provided by the IEEE-1588,Precision Time Protocol(PTP)protocol.The standard,dating back to 2008,marginally addresses security aspects,notably not encompassing the frames designed for management purposes(Type Length Values or TLVs).In this work we show that the TLVs can be abused by an attacker to reconfigure,manipulate,or shut down time synchronization.The effects of such an attack can be serious,ranging from interruption of operations to actual unintended behavior of industrial devices,possibly resulting in physical damages or even harm to operators.The paper analyzes the root causes of this vulnerability,and provides concrete examples of attacks leveraging it to de-synchronize the clocks,showing that they can succeed with limited resources,realistically available to a malicious actor.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10375016 and 10474018) and the Natural Science Foundation of Hebei Province (Grant Nos C2005000011and A2004000005) and the Key Subject Construction Project of Hebei Provincial University.
文摘It has been proved recently that the spike timing can play an important role in information transmission, so in this paper we develop a network with N-unlt FitzHugh-Nagumo neurons coupled by gap junctions and discuss the dependence of the spike timing precision on synaptic coupling strength, the noise intensity and the size of the neuron ensemble. The calculated results show that the spike timing precision decreases as the noise intensity increases; and the ensemble spike timing precision increases with coupling strength increasing. The electric synapse coupling has a more important effect on the spike timing precision than the chemical synapse coupling.
文摘Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.
基金Supported by National Natural Science Foundation of China(10979003,11005107)
文摘The prototype of a time digitizing system for the BESⅢ endcap TOF (ETOF) upgrade is introduced in this paper, The ETOF readout electronics has a distributed architecture. Hit signals from the multi-gap resistive plate chamber (MRPC) are signaled as LVDS by front-end electronics (FEE) and are then sent to the back-end time digitizing system via long shield differential twisted pair cables. The ETOF digitizing system consists of two VME crates, each of which contains modules for time digitization, clock, trigger, fast control, etc. The time digitizing module (TDIG) of this prototype can support up to 72 electrical channels for hit information measurement. The fast control (FCTL) module can operate in barrel or endcap mode. The barrel FCTL fans out fast control signals from the trigger system to the endcap FCTLs, merges data from the endcaps and then transfers to the trigger system. Without modifying the barrel TOF (BTOF) structure, this time digitizing architecture benefits from improved ETOF performance without degrading the BTOF performance. Lab experiments show that the time resolution of this digitizing system can be lower than 20 ps, and the data throughput to the DAQ can be about 92 Mbps. Beam experiments show that the total time resolution can be lower than 45 ps.