The hollow parts formed with cross-wedge rolling (CWR) have a wide application in many fields, such as architecture and automobile, etc. But the finished configuration of part’s cross section was always ellipse and i...The hollow parts formed with cross-wedge rolling (CWR) have a wide application in many fields, such as architecture and automobile, etc. But the finished configuration of part’s cross section was always ellipse and it was hard to make it satisfied with traditional forming process. This paper proposed a FEM model of hollow workpiece of CWR in the sizing process, and simulated the deformation condition using the ANSYS program. Three kinds of parts with different wall thickness were calculated. Some stress and strain fields of the deformed hollow parts at various conditions are gained. The influence of wall thickness on the distribution of stress and strain was analyzed. The paper also found two phenomena, which never have been seen at traditional experiment, and author tried to give some explanations. The ANSYS program provided the relationship between the tolerance of the deformed workpiece and the deforming parameter. It is helpful to design the sizing dies of a new precise forming process of hollow parts on the CWR. The new process that designed through the information of FEM improved the accuracy of hollow parts on CWR. It proved the validity and practicability of numerical simulation.展开更多
By studying the e ects of geometric precision on kinematic accuracy, an error mapping model has been established, based on the hypothesis that a motion pair and its installation surface are rigid. However, when using ...By studying the e ects of geometric precision on kinematic accuracy, an error mapping model has been established, based on the hypothesis that a motion pair and its installation surface are rigid. However, when using this assumption,there is a significant error induced in high-precision computer numerical control(CNC) machine tools as compared with reality. One of the most important reasons for this error is failing to consider the error averaging e ect of motion pair elements. Therefore, this work examines a high-precision horizontal machining center as its research object, and analyzes the error averaging mechanism of a rolling guide pair under a deformation of the rolling elements. The carriage bearing forces caused by guideway straightness errors are obtained by constructing a geometric error model of a single carriage. The relationship between guideway straightness errors and carriage bearing forces is described by a transfer function in the spatial frequency domain, and its characteristics are analyzed. It quantifies the so-called error averaging e ect of the rolling guide system and, on this basis, a static model for four carriages is established to reflect the error averaging e ect of the rolling guide pair on the position and orientation errors of the motion pair. In addition, it is found that the wavelengths and phase di erences of guideway errors a ect this error averaging mechanism, but the amplitude and preload have little influence thereon. The experiment result shows that the kinematic straightness errors in the x-and y-directions were approximately 1/3 to 1/2 of the guideway straightness errors in the corresponding directions. The results can be used to guide the precision design and assembly of machine tools.展开更多
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri...Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.展开更多
In view of the TIN_DDM buffer surface existing in the construction and application of special data type,algorithm efficiency and precision are not matching;the paper applied the rolling ball model in the process of TI...In view of the TIN_DDM buffer surface existing in the construction and application of special data type,algorithm efficiency and precision are not matching;the paper applied the rolling ball model in the process of TIN_DDM buffer surface construction.Based on the precision limitation analysis of rolling ball model,the overall precision control method of rolling ball model has been established.Considering the efficiency requirement of TIN_DDM buffer surface construction,the influence principle of key sampling points and rolling ball radius to TIN_DDM buffer surface construction efficiency has been elaborated,and the rule of identifying key sampling points has also been designed.Afterwards,by erecting the numerical relationship between key sampling points and rolling ball radius,a TIN_DDM buffer surface construction algorithm based on rolling ball acceleration optimization model has been brought forward.The time complexity of the algorithm is O(n).The experiments show that the algorithm could realize the TIN_DDM buffer surface construction with high efficiency,and the algorithm precision is controlled with in 2σ.展开更多
Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder r...Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.展开更多
The BLU (back light unit) is the core component of the LCD for notebook, mobile-phone, navigation, as well as large sized TV, PID (public information display), etc. In order to enhance optical efficiency of LCD, optic...The BLU (back light unit) is the core component of the LCD for notebook, mobile-phone, navigation, as well as large sized TV, PID (public information display), etc. In order to enhance optical efficiency of LCD, optical films with the uniform prism patterns have been used for BLU by stacking two films up orthogonally. In this case, light interference-phenomenon occurred such as Morie, wet-out, u-turning, etc. It caused several problems such as low brightness, spots and stripes in LCD. Recently, the high-luminance micro complex prism patterns are actively studied to avoid the light interference-phenomenon and enhance the optical efficiency. In this study, the roll master to manufacture complex micro prism pattern film was machined by using the high precision lathe. The machined patterns on the roll master were 50, 45, 40, 35, 30, 25, 20, 15, 10 and 5 μm in the pitch with 25.0, 22.5, 20.0, 17.5, 15.0, 12.5, 10.0, 7.5, 5.0 and 2.5 μm in the peak height, respectively. The roll was 2 000 mm in length and 320 mm in diameter. The electroplated roll by copper and the natural single crystal diamond tool was used for machining the patterns. The cutting force was measured and analyzed for each cutting condition by using the dynamometer. The chips and the surfaces after being machined were analyzed by SEM and microscope.展开更多
Combining adaptive theory with an advanced second-order sliding mode control algorithm,a roll stabilization controller with aerodynamic disturbance and actuator failure consideration for spinning flight vehicles is pr...Combining adaptive theory with an advanced second-order sliding mode control algorithm,a roll stabilization controller with aerodynamic disturbance and actuator failure consideration for spinning flight vehicles is proposed in this paper.The presented controller is summarized as an“observer-controller”system.More specifically,an adaptive secondorder sliding mode observer is presented to select the proper design parameters and estimate the knowledge of aerodynamic disturbance and actuator failure,while the proposed roll stabilization control scheme can drive both roll angle and rotation rate smoothly converge to the desired value.Theoretical analysis and numerical simulation results demonstrate the effectiveness of the proposed controller.展开更多
文摘The hollow parts formed with cross-wedge rolling (CWR) have a wide application in many fields, such as architecture and automobile, etc. But the finished configuration of part’s cross section was always ellipse and it was hard to make it satisfied with traditional forming process. This paper proposed a FEM model of hollow workpiece of CWR in the sizing process, and simulated the deformation condition using the ANSYS program. Three kinds of parts with different wall thickness were calculated. Some stress and strain fields of the deformed hollow parts at various conditions are gained. The influence of wall thickness on the distribution of stress and strain was analyzed. The paper also found two phenomena, which never have been seen at traditional experiment, and author tried to give some explanations. The ANSYS program provided the relationship between the tolerance of the deformed workpiece and the deforming parameter. It is helpful to design the sizing dies of a new precise forming process of hollow parts on the CWR. The new process that designed through the information of FEM improved the accuracy of hollow parts on CWR. It proved the validity and practicability of numerical simulation.
基金Supported by National Science and Technology Major Project of China(Grant No.2015ZX04005001)Tianjin Provincial Nature Science Foundation of China(Grant No.16JCZDJC38400)
文摘By studying the e ects of geometric precision on kinematic accuracy, an error mapping model has been established, based on the hypothesis that a motion pair and its installation surface are rigid. However, when using this assumption,there is a significant error induced in high-precision computer numerical control(CNC) machine tools as compared with reality. One of the most important reasons for this error is failing to consider the error averaging e ect of motion pair elements. Therefore, this work examines a high-precision horizontal machining center as its research object, and analyzes the error averaging mechanism of a rolling guide pair under a deformation of the rolling elements. The carriage bearing forces caused by guideway straightness errors are obtained by constructing a geometric error model of a single carriage. The relationship between guideway straightness errors and carriage bearing forces is described by a transfer function in the spatial frequency domain, and its characteristics are analyzed. It quantifies the so-called error averaging e ect of the rolling guide system and, on this basis, a static model for four carriages is established to reflect the error averaging e ect of the rolling guide pair on the position and orientation errors of the motion pair. In addition, it is found that the wavelengths and phase di erences of guideway errors a ect this error averaging mechanism, but the amplitude and preload have little influence thereon. The experiment result shows that the kinematic straightness errors in the x-and y-directions were approximately 1/3 to 1/2 of the guideway straightness errors in the corresponding directions. The results can be used to guide the precision design and assembly of machine tools.
基金Project(51205299)supported by the National Natural Science Foundation of ChinaProject(2015M582643)supported by the China Postdoctoral Science Foundation+2 种基金Project(2014BAA008)supported by the Science and Technology Support Program of Hubei Province,ChinaProject(2014-IV-144)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AAA07-01)supported by the Major Science and Technology Achievements Transformation&Industrialization Program of Hubei Province,China
文摘Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.
基金National Natural Science Foundation of China(Nos.41601498,41471380)National Key R&D Program of China(No.2017YFC1405505)。
文摘In view of the TIN_DDM buffer surface existing in the construction and application of special data type,algorithm efficiency and precision are not matching;the paper applied the rolling ball model in the process of TIN_DDM buffer surface construction.Based on the precision limitation analysis of rolling ball model,the overall precision control method of rolling ball model has been established.Considering the efficiency requirement of TIN_DDM buffer surface construction,the influence principle of key sampling points and rolling ball radius to TIN_DDM buffer surface construction efficiency has been elaborated,and the rule of identifying key sampling points has also been designed.Afterwards,by erecting the numerical relationship between key sampling points and rolling ball radius,a TIN_DDM buffer surface construction algorithm based on rolling ball acceleration optimization model has been brought forward.The time complexity of the algorithm is O(n).The experiments show that the algorithm could realize the TIN_DDM buffer surface construction with high efficiency,and the algorithm precision is controlled with in 2σ.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 61174047) and the Fundamental Research Funds for the Central Universities (HEUCF041406).
文摘Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.
基金Project(R15-2006-022-01001-0) supported by the National Core Research Center Program from MOST and KOSEF
文摘The BLU (back light unit) is the core component of the LCD for notebook, mobile-phone, navigation, as well as large sized TV, PID (public information display), etc. In order to enhance optical efficiency of LCD, optical films with the uniform prism patterns have been used for BLU by stacking two films up orthogonally. In this case, light interference-phenomenon occurred such as Morie, wet-out, u-turning, etc. It caused several problems such as low brightness, spots and stripes in LCD. Recently, the high-luminance micro complex prism patterns are actively studied to avoid the light interference-phenomenon and enhance the optical efficiency. In this study, the roll master to manufacture complex micro prism pattern film was machined by using the high precision lathe. The machined patterns on the roll master were 50, 45, 40, 35, 30, 25, 20, 15, 10 and 5 μm in the pitch with 25.0, 22.5, 20.0, 17.5, 15.0, 12.5, 10.0, 7.5, 5.0 and 2.5 μm in the peak height, respectively. The roll was 2 000 mm in length and 320 mm in diameter. The electroplated roll by copper and the natural single crystal diamond tool was used for machining the patterns. The cutting force was measured and analyzed for each cutting condition by using the dynamometer. The chips and the surfaces after being machined were analyzed by SEM and microscope.
基金the National Key R&D Program of China(No.2017YFC0806700)National Natural Science Foundation of China(No.11532002 and No.11202023)Hong Jian Foundation of Xi’an Modern Control Technology Research Institute are greatly acknowledged.
文摘Combining adaptive theory with an advanced second-order sliding mode control algorithm,a roll stabilization controller with aerodynamic disturbance and actuator failure consideration for spinning flight vehicles is proposed in this paper.The presented controller is summarized as an“observer-controller”system.More specifically,an adaptive secondorder sliding mode observer is presented to select the proper design parameters and estimate the knowledge of aerodynamic disturbance and actuator failure,while the proposed roll stabilization control scheme can drive both roll angle and rotation rate smoothly converge to the desired value.Theoretical analysis and numerical simulation results demonstrate the effectiveness of the proposed controller.