Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to ...Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to be divided into several groups on an appropriate threshold. Currently, group threshold value is mainly determined by researchers experience. Few studies focus on group threshold in temperature variable grouping. Since the threshold is important in error compensation, this paper arms to find out an optimal threshold to realize temperature variable optimization in thermal error modeling. Firstly, correlation coefficient is used to express membership grade of temperature variables, and the theory of fuzzy transitive closure is applied to obtain relational matrix of temperature variables. Concepts as compact degree and separable degree are introduced. Then evaluation model of temperature variable clustering is built. The optimal threshold and the best temperature variable clustering can be obtained by setting the maximum value of evaluation model as the objective. Finally, correlation coefficients between temperature variables and thermal error are calculated in order to find out optimum temperature variables for thermal error modeling. An experiment is conducted on a precise horizontal machining center. In experiment, three displacement sensors are used to measure spindle thermal error and twenty-nine temperature sensors are utilized to detect the machining center temperature. Experimental result shows that the new method of temperature variable optimization on optimal threshold successfully worked out a best threshold value interval and chose seven temperature variables from twenty-nine temperature measuring points. The model residual of z direction is within 3 μm. Obviously, the proposed new variable optimization method has simple computing process and good modeling accuracy, which is quite fit for thermal error compensation.展开更多
When precision fanning management zones (MZs) are delineated in an agricultural field for precision nutrient management, unsupervised classification and cluster analysis procedures using remote sensing image analysi...When precision fanning management zones (MZs) are delineated in an agricultural field for precision nutrient management, unsupervised classification and cluster analysis procedures using remote sensing image analysis software are performed. These unsupervised classification and cluster analysis procedures are performed on the basis of the assumption that grouping of data points into naturally occurring clusters reduces within zone variability. The problem is that, there are small patches of different soil types within each management zone that are regarded as insignificant by the farmer, and are assimilated within larger MZs. These will consequently make soils within a management zone to be inhomogeneous. The objective of this study was to determine the probability of soil sampling occurrences on patches assimilated during delineation of MZs after a cluster analysis was performed. The study was conducted on a 5.0 ha (25°05′34.46″ S and 28°18′30.01″ E) and a 24.4 ha (23°59′04.61″ S and 28°52′29.43″ E) fields in the Waterberg District of the Limpopo Province in South Africa. A bare-soil high resolution Quickbird satellite imagery of a conventionally tilled agricultural field was used to develop MZs in the field. Soils were sampled using systematic unaligned sampling on a 35.0 m and 30.0 m grids for the 24.4 ha and 5.0 ha fields, respectively. Probabilities were calculated based on percentage area assimilated during the cluster analysis procedure that was performed using remote sensing image analysis software. The results indicated that in the 24.4 ha field there were 2.5 ha patches of high and medium zones that were assimilated within the low zone, and thus making low zones non-homogeneous. After cluster analysis and assimilation of patches, the low zone in the 24.4 ha field increased by 45.5% (2.5 ha) while the high zone was 16.4% (2.4 ha) smaller in size. In the smaller field of 5.0 ha, the high zone, which was originally 3.20 ha, lost 0.37 ha (11.6%), which was assimilated in either low or medium zone. The study indicates that unequal probability proportional to size sampling could be used to minimize error when sampling across precision farming MZs because typically the low, medium and high MZs are not of equal size and do not contribute equally towards the mean values of soil samples.展开更多
In this paper,in order to improve the precision of cable force identification of a practical cable-stayed bridge and consider some precision problems of vibration method in surveying the cable force in the engineering...In this paper,in order to improve the precision of cable force identification of a practical cable-stayed bridge and consider some precision problems of vibration method in surveying the cable force in the engineering application,firstly,three calculation methods for the cable force measurement are analyzed and contrasted;secondly,using the method of finite element numerical simulation and the theory of the error analysis,the effect of both bending rigidity and constraint conditions on simple formula of vibration method is investigated;and the dependence of the precision of cable frequency identification on spectrum resolution,sampling time,and the number of sampling points is studied;Finally,fundamental frequency method,frequency difference method,and peak value method are applied to the cable force calculation of a practical project;and their computational precision and error are contrasted and analyzed.It is observed that it is essential to take into account the effect of every factor on the precision of the cable force identification and make it possible to identify the cable force more accurate by vibration method;and that it simultaneously provides an effective basis for the development of a high-precision equipment.展开更多
In this paper, we conduct research on the large precision instrument error correction model under the perspectives of stability androbustness. It is one of the effective methods to improve the instruments accuracy usi...In this paper, we conduct research on the large precision instrument error correction model under the perspectives of stability androbustness. It is one of the effective methods to improve the instruments accuracy using error correction technology, but at present, a lot of errorcorrection is limited to the system error modifi cation, only a small number of the instruments to an error in the dynamic error correction timely,device on the instrument precision sensors, apparently complicate the instrument structure. To fully system error correction that will affect theprecision of instrument mainly random error. Instrument is the main task of error correction is to use a certain method to compensate separableinstruments each component part of a deterministic system error, so the key problems of error correction as is the requirement of equipmentstructure stability is good, with this to ensure that the instrument error of the uncertainty, so that the fundamental fl aw. Under this basis, this paperproposes the novel countermeasure of the issues that is innovative.展开更多
Digitization precision analysis is an important tool to ensure the design precision of machine tool currently. The correlative research about precision modeling and analysis mainly focuses on the geometry precision an...Digitization precision analysis is an important tool to ensure the design precision of machine tool currently. The correlative research about precision modeling and analysis mainly focuses on the geometry precision and motion precision of machine tool, and the forming motion precision of workpiece surface. For the machine tool with complex forming motion, there is not accurate corresponding relationship between the existing criterion on precision design and the machining precision of workpiece. Therefore, a design scheme on machine tool precision based on error prediction is proposed, which is divided into two-stage digitization precision analysis crucially. The first stage aims at the technology system to complete the precision distribution and inspection from the workpiece to various component parts of technology system and achieve the total output precision of machine tool under the specified machining precision; the second stage aims at the machine tool system to complete the precision distribution and inspection from the output precision of machine tool to the machine tool components. This article serves YK3610 gear hobber as the example to describe the error model of two systems and basic application method, and the practical cutting precision of this machine tool achieves to 5-4-4 grade. The proposed method can provide reliable guidance to the precision design of machine tool with complex forming motion.展开更多
This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The pap...This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demoastrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.展开更多
After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting cont...After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting control moment error is carried out respectively by means of Monte Carlo method and the distribution of impact points of rudder control rocket is counted from all the successful subsamples. In the case of adding interference errors associated with rudder angle error and starting time error, the simulation analysis of impact point dispersion is done and its lateral and longitudinal correction abilities at different targeting angles are simulated to identify the effects of these factors on characteristics and control precision of the rudder control rocket, which provides the relevant reference for high-precision design of rudder control system.展开更多
A method to analyze the effect of form errors and local deformation on the assembly accu- racy and its stability in a non-rigid assembly system is proposed. The contact finite element method was used to obtain local d...A method to analyze the effect of form errors and local deformation on the assembly accu- racy and its stability in a non-rigid assembly system is proposed. The contact finite element method was used to obtain local deformation of mating surfaces, which was superposed onto form errors to obtain real mating surface data of assemblies. Then mating variation was obtained by establishing vir- tual contact planes. Finally, an experiment of the assembly of two cylindrical components was car- ried out to verify the validity of the proposed method. By comparing the calculation accuracies of 3D assembly with and without taking into account local deformation, the results showed that the effects of local deformation of mating surfaces on calculation accuracy of mating variation was not neglect- able compared with form errors.展开更多
Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia....Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.展开更多
During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing deg...During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing degree of each factor is presented to provide orientation for error reduction and error compensation.展开更多
As one of the ways to improve the machining accuracy of machine tools, error compensation is reviewed from different view points, and the main barriers to further improvement of efficiency of error compensation are an...As one of the ways to improve the machining accuracy of machine tools, error compensation is reviewed from different view points, and the main barriers to further improvement of efficiency of error compensation are analyzed in detail and the vista of the error compensation in precision and ultra precision machines is discussed.展开更多
GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free...GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free combinations. To obtain the optimal positioning precision, a new linear combination method is addressed through the variance-covariance (VCV) of the GPS multi-frequency carrier phase combination equations, and the impact of the positioning precision is analyzed with the changing of the observation errors deduced by the law of error propagation. For the high precision positioning with only one carrier phase combination, the optimal combination method is deduced and further validated by an example of a baseline resolution with 60 km length. The result indicates that this method is the simplest, and the positioning precision is the best. Therefore, it is useful for long baseline quick positioning for different precision requirements in various distances.展开更多
Hydrostatic leveling system(HLS)is widely used in precision engineering survey,especially the alignment of particle accelerator,and the tidal effects on the measurement accuracy of HLS is non-ignorable,thus studies on...Hydrostatic leveling system(HLS)is widely used in precision engineering survey,especially the alignment of particle accelerator,and the tidal effects on the measurement accuracy of HLS is non-ignorable,thus studies on tidal effects on the HLS is vital.A set of HLS was installed in Jingxian seismostation for verifying the methods to handle the tidal effects on the readings of HLS.Harmonic analysis of the data recorded by HLS and DSQ water tube clinometers in Jingxian seismostation and contrastive analysis of the results are completed.The tilt tide can be well reflected in the data of the both instruments and the results are both reliable.The reasons of the difference between the results are analyzed in this paper.Besides,a validation study based on the measurement data of the HLS used in SPring-8 storage ring for tidal correction on the reading of HLS is completed.The research establishes a foundation for HLS to be applied in micron-level precision alignment of particle accelerator in the future.展开更多
We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacem...We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.展开更多
Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization mode...Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization model with respect to the locations of the array and the transmitted signals to improve the performance of FED.As the problem is nonconvex and NP-hard,particle swarm optimization(PSO) is adopted to solve the locations of the array,while designing the transmitted signals under a feasible array is considered as a unimodular quadratic program(UQP) subproblem to calculate the fitness criterion of PSO.In the PSO-UQP framework established,two methods are presented for the UQP subproblem,which are more efficient and more accurate respectively than previous works.Furthermore,a threshold value is set in the framework to determine which method to adopt to take full advantages of the methods above.Meanwhile,we obtain the maximum localization error that FED can tolerate,which is significant for implementing FED in practice.Simulation results are provided to demonstrate the effectiveness of the joint optimization algorithm,and the correctness of the maximum localization error derived.展开更多
In order to evaluate the accuracy of bispectral estimation method, signals of cosine function were adopted. Because the cosine signals’ three order moment spectrum and three order cumulant spectrum are zero, Non zero...In order to evaluate the accuracy of bispectral estimation method, signals of cosine function were adopted. Because the cosine signals’ three order moment spectrum and three order cumulant spectrum are zero, Non zero part of the bispectrum estimated by no matter which method is the estimation error. Through the comparison of three kinds of estimation methods: the direct method, indirect method and AR parameter method, errors of various estimation methods were obtained, then changing the values of different parameters in all methods, and observing the bispectral error values changes with the parameters, so as to provide a basis for the various bispectrum estimation method and the selection.展开更多
A new method of increasing the range measure preci- sion by Chirp- Z transform in the level Radar has been put up in this paper. The main assignment of this research is to accom- plish the FFT and Chirp- Z transform. ...A new method of increasing the range measure preci- sion by Chirp- Z transform in the level Radar has been put up in this paper. The main assignment of this research is to accom- plish the FFT and Chirp- Z transform. At the same time, the af- fection of the two range measure methods has been analyzed in this paper. This method can increase both the calculation effi- ciency and range measure precision remarkably by theory calcu- lating and digital emulation.展开更多
Optical glass elements with the ellipsoidal surface are used in many critical aerospace instruments,such as satellites,telescope and cameras.Their optical performance is mainly affected by profile accuracy and surface...Optical glass elements with the ellipsoidal surface are used in many critical aerospace instruments,such as satellites,telescope and cameras.Their optical performance is mainly affected by profile accuracy and surface quality.In this paper,a rectangular ellipsoid surface is precisely ground on a BK7 optical glass blank by grating scanning grinding path with a three-axis CNC precision surface grinder.A profile error compensation procedure for ellipsoidal grinding is proposed based on the error analysis about the primary error sources in the XY and YZ projection planes during the grinding process.The mathematical prediction models of the wheel arc profile error,the measurement and wear error of the grinding wheel radiuses are established.By applying the proposed error compensation procedure,the profile accuracy of the ellipsoidal surface was improved from 4 lm to 2 lm in the XY plane,and improved from 15 lm to 5 lm in the YZ plane.展开更多
基金supported by Jiangsu Provincial Prospective Joint Research Foundation for Industry-University-Research of China (Grant No. BY2009102)Henan Provincial Major Scientific and Technological Projects of China (Grant No. 102102210050)
文摘Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to be divided into several groups on an appropriate threshold. Currently, group threshold value is mainly determined by researchers experience. Few studies focus on group threshold in temperature variable grouping. Since the threshold is important in error compensation, this paper arms to find out an optimal threshold to realize temperature variable optimization in thermal error modeling. Firstly, correlation coefficient is used to express membership grade of temperature variables, and the theory of fuzzy transitive closure is applied to obtain relational matrix of temperature variables. Concepts as compact degree and separable degree are introduced. Then evaluation model of temperature variable clustering is built. The optimal threshold and the best temperature variable clustering can be obtained by setting the maximum value of evaluation model as the objective. Finally, correlation coefficients between temperature variables and thermal error are calculated in order to find out optimum temperature variables for thermal error modeling. An experiment is conducted on a precise horizontal machining center. In experiment, three displacement sensors are used to measure spindle thermal error and twenty-nine temperature sensors are utilized to detect the machining center temperature. Experimental result shows that the new method of temperature variable optimization on optimal threshold successfully worked out a best threshold value interval and chose seven temperature variables from twenty-nine temperature measuring points. The model residual of z direction is within 3 μm. Obviously, the proposed new variable optimization method has simple computing process and good modeling accuracy, which is quite fit for thermal error compensation.
文摘When precision fanning management zones (MZs) are delineated in an agricultural field for precision nutrient management, unsupervised classification and cluster analysis procedures using remote sensing image analysis software are performed. These unsupervised classification and cluster analysis procedures are performed on the basis of the assumption that grouping of data points into naturally occurring clusters reduces within zone variability. The problem is that, there are small patches of different soil types within each management zone that are regarded as insignificant by the farmer, and are assimilated within larger MZs. These will consequently make soils within a management zone to be inhomogeneous. The objective of this study was to determine the probability of soil sampling occurrences on patches assimilated during delineation of MZs after a cluster analysis was performed. The study was conducted on a 5.0 ha (25°05′34.46″ S and 28°18′30.01″ E) and a 24.4 ha (23°59′04.61″ S and 28°52′29.43″ E) fields in the Waterberg District of the Limpopo Province in South Africa. A bare-soil high resolution Quickbird satellite imagery of a conventionally tilled agricultural field was used to develop MZs in the field. Soils were sampled using systematic unaligned sampling on a 35.0 m and 30.0 m grids for the 24.4 ha and 5.0 ha fields, respectively. Probabilities were calculated based on percentage area assimilated during the cluster analysis procedure that was performed using remote sensing image analysis software. The results indicated that in the 24.4 ha field there were 2.5 ha patches of high and medium zones that were assimilated within the low zone, and thus making low zones non-homogeneous. After cluster analysis and assimilation of patches, the low zone in the 24.4 ha field increased by 45.5% (2.5 ha) while the high zone was 16.4% (2.4 ha) smaller in size. In the smaller field of 5.0 ha, the high zone, which was originally 3.20 ha, lost 0.37 ha (11.6%), which was assimilated in either low or medium zone. The study indicates that unequal probability proportional to size sampling could be used to minimize error when sampling across precision farming MZs because typically the low, medium and high MZs are not of equal size and do not contribute equally towards the mean values of soil samples.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 90715036)
文摘In this paper,in order to improve the precision of cable force identification of a practical cable-stayed bridge and consider some precision problems of vibration method in surveying the cable force in the engineering application,firstly,three calculation methods for the cable force measurement are analyzed and contrasted;secondly,using the method of finite element numerical simulation and the theory of the error analysis,the effect of both bending rigidity and constraint conditions on simple formula of vibration method is investigated;and the dependence of the precision of cable frequency identification on spectrum resolution,sampling time,and the number of sampling points is studied;Finally,fundamental frequency method,frequency difference method,and peak value method are applied to the cable force calculation of a practical project;and their computational precision and error are contrasted and analyzed.It is observed that it is essential to take into account the effect of every factor on the precision of the cable force identification and make it possible to identify the cable force more accurate by vibration method;and that it simultaneously provides an effective basis for the development of a high-precision equipment.
文摘In this paper, we conduct research on the large precision instrument error correction model under the perspectives of stability androbustness. It is one of the effective methods to improve the instruments accuracy using error correction technology, but at present, a lot of errorcorrection is limited to the system error modifi cation, only a small number of the instruments to an error in the dynamic error correction timely,device on the instrument precision sensors, apparently complicate the instrument structure. To fully system error correction that will affect theprecision of instrument mainly random error. Instrument is the main task of error correction is to use a certain method to compensate separableinstruments each component part of a deterministic system error, so the key problems of error correction as is the requirement of equipmentstructure stability is good, with this to ensure that the instrument error of the uncertainty, so that the fundamental fl aw. Under this basis, this paperproposes the novel countermeasure of the issues that is innovative.
基金supported by National Natural Science Foundation of China (Grant No. 51075419)Chongqing Municipal Natural Science Foundation of China (Grant No. CSTC,2009BB3234)
文摘Digitization precision analysis is an important tool to ensure the design precision of machine tool currently. The correlative research about precision modeling and analysis mainly focuses on the geometry precision and motion precision of machine tool, and the forming motion precision of workpiece surface. For the machine tool with complex forming motion, there is not accurate corresponding relationship between the existing criterion on precision design and the machining precision of workpiece. Therefore, a design scheme on machine tool precision based on error prediction is proposed, which is divided into two-stage digitization precision analysis crucially. The first stage aims at the technology system to complete the precision distribution and inspection from the workpiece to various component parts of technology system and achieve the total output precision of machine tool under the specified machining precision; the second stage aims at the machine tool system to complete the precision distribution and inspection from the output precision of machine tool to the machine tool components. This article serves YK3610 gear hobber as the example to describe the error model of two systems and basic application method, and the practical cutting precision of this machine tool achieves to 5-4-4 grade. The proposed method can provide reliable guidance to the precision design of machine tool with complex forming motion.
基金This study was supported by the National Key Basic Research and Development Project of China 2004CB418303 the National Natural Science foundation of China under Grant Nos. 40305012 and 40475027Jiangsu Key Laboratory of Meteorological Disaster KLME0601.
文摘This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demoastrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.
文摘After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting control moment error is carried out respectively by means of Monte Carlo method and the distribution of impact points of rudder control rocket is counted from all the successful subsamples. In the case of adding interference errors associated with rudder angle error and starting time error, the simulation analysis of impact point dispersion is done and its lateral and longitudinal correction abilities at different targeting angles are simulated to identify the effects of these factors on characteristics and control precision of the rudder control rocket, which provides the relevant reference for high-precision design of rudder control system.
基金Supported by the National Natural Science Foundation of China(510750355110503651375054)
文摘A method to analyze the effect of form errors and local deformation on the assembly accu- racy and its stability in a non-rigid assembly system is proposed. The contact finite element method was used to obtain local deformation of mating surfaces, which was superposed onto form errors to obtain real mating surface data of assemblies. Then mating variation was obtained by establishing vir- tual contact planes. Finally, an experiment of the assembly of two cylindrical components was car- ried out to verify the validity of the proposed method. By comparing the calculation accuracies of 3D assembly with and without taking into account local deformation, the results showed that the effects of local deformation of mating surfaces on calculation accuracy of mating variation was not neglect- able compared with form errors.
文摘Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.
文摘During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing degree of each factor is presented to provide orientation for error reduction and error compensation.
文摘As one of the ways to improve the machining accuracy of machine tools, error compensation is reviewed from different view points, and the main barriers to further improvement of efficiency of error compensation are analyzed in detail and the vista of the error compensation in precision and ultra precision machines is discussed.
基金Supported by the Key Laboratory of Geological Hazards on Three Gorges Reservoir Area,Ministry of Education, China(No.2006KDZ05).
文摘GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free combinations. To obtain the optimal positioning precision, a new linear combination method is addressed through the variance-covariance (VCV) of the GPS multi-frequency carrier phase combination equations, and the impact of the positioning precision is analyzed with the changing of the observation errors deduced by the law of error propagation. For the high precision positioning with only one carrier phase combination, the optimal combination method is deduced and further validated by an example of a baseline resolution with 60 km length. The result indicates that this method is the simplest, and the positioning precision is the best. Therefore, it is useful for long baseline quick positioning for different precision requirements in various distances.
基金Supported by the National Natural Science Foundation of China(No.11075151)Ph.D.Program Foundation of Ministry of Education ofChina(No.20123402110002)
文摘Hydrostatic leveling system(HLS)is widely used in precision engineering survey,especially the alignment of particle accelerator,and the tidal effects on the measurement accuracy of HLS is non-ignorable,thus studies on tidal effects on the HLS is vital.A set of HLS was installed in Jingxian seismostation for verifying the methods to handle the tidal effects on the readings of HLS.Harmonic analysis of the data recorded by HLS and DSQ water tube clinometers in Jingxian seismostation and contrastive analysis of the results are completed.The tilt tide can be well reflected in the data of the both instruments and the results are both reliable.The reasons of the difference between the results are analyzed in this paper.Besides,a validation study based on the measurement data of the HLS used in SPring-8 storage ring for tidal correction on the reading of HLS is completed.The research establishes a foundation for HLS to be applied in micron-level precision alignment of particle accelerator in the future.
基金the National Science Foundation of China (No.50745020).
文摘We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.
基金Anhui Provincial Natural Science Foundation(Project for Youth:1908085QF252)Research Program of National University of Defense Technology(ZK19-10)。
文摘Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization model with respect to the locations of the array and the transmitted signals to improve the performance of FED.As the problem is nonconvex and NP-hard,particle swarm optimization(PSO) is adopted to solve the locations of the array,while designing the transmitted signals under a feasible array is considered as a unimodular quadratic program(UQP) subproblem to calculate the fitness criterion of PSO.In the PSO-UQP framework established,two methods are presented for the UQP subproblem,which are more efficient and more accurate respectively than previous works.Furthermore,a threshold value is set in the framework to determine which method to adopt to take full advantages of the methods above.Meanwhile,we obtain the maximum localization error that FED can tolerate,which is significant for implementing FED in practice.Simulation results are provided to demonstrate the effectiveness of the joint optimization algorithm,and the correctness of the maximum localization error derived.
文摘In order to evaluate the accuracy of bispectral estimation method, signals of cosine function were adopted. Because the cosine signals’ three order moment spectrum and three order cumulant spectrum are zero, Non zero part of the bispectrum estimated by no matter which method is the estimation error. Through the comparison of three kinds of estimation methods: the direct method, indirect method and AR parameter method, errors of various estimation methods were obtained, then changing the values of different parameters in all methods, and observing the bispectral error values changes with the parameters, so as to provide a basis for the various bispectrum estimation method and the selection.
文摘A new method of increasing the range measure preci- sion by Chirp- Z transform in the level Radar has been put up in this paper. The main assignment of this research is to accom- plish the FFT and Chirp- Z transform. At the same time, the af- fection of the two range measure methods has been analyzed in this paper. This method can increase both the calculation effi- ciency and range measure precision remarkably by theory calcu- lating and digital emulation.
基金National Natural Science Foundation of China(no.51875321)Shandong Provincial Natural Science Foundation(no.ZR2018MEE019)Major Basic Research of Shandong Provincial Natural Science Foundation(no.ZR2018ZB0521,ZR2018ZA0401)。
文摘Optical glass elements with the ellipsoidal surface are used in many critical aerospace instruments,such as satellites,telescope and cameras.Their optical performance is mainly affected by profile accuracy and surface quality.In this paper,a rectangular ellipsoid surface is precisely ground on a BK7 optical glass blank by grating scanning grinding path with a three-axis CNC precision surface grinder.A profile error compensation procedure for ellipsoidal grinding is proposed based on the error analysis about the primary error sources in the XY and YZ projection planes during the grinding process.The mathematical prediction models of the wheel arc profile error,the measurement and wear error of the grinding wheel radiuses are established.By applying the proposed error compensation procedure,the profile accuracy of the ellipsoidal surface was improved from 4 lm to 2 lm in the XY plane,and improved from 15 lm to 5 lm in the YZ plane.