Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear...Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus 〈0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.展开更多
The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement pr...The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement principle for the motor is proved by experiments. The pulse waveforms are applied to drive the motor to move in steps. The motor has a displacement resolution of 10 nm and a maximum velocity of 0.6 mm/s. It can drive a 200 g slider whose range is 20 mm. A one-dimensional precision positioning platform is fabricated by using the new hybrid piezoelectric motor. The prototype is made up of two servomotors and two piezoelectric motors, which are controlled automatically by a computer. The positioning range of the platform is 10 cm.展开更多
For the smaller thrust,it is difficult to achieve 3Dtrans-scale precision positioning based on previous stick-slip driving.A large thrust trans-scale precision positioning stage is studied based on the inertial stick-...For the smaller thrust,it is difficult to achieve 3Dtrans-scale precision positioning based on previous stick-slip driving.A large thrust trans-scale precision positioning stage is studied based on the inertial stick-slip driving.The process of the movement is divided into two steps,i.e.,the″sliding″phase and the″stickness″phase.In the whole process,the kinematics model of the inertial stick-slip driving is established,and it reveals some factors affecting the velocity of inertial stick-slip driving.Furthermore,a simulation of movement is preformed by Matlab-Simulink software,and the whole process of the inertial stick-slip driving is displayed.After one experimental prototype is designed,the back and forth velocity is tested.Finally,the simulation verifies the accuracy of the kinematics model.展开更多
The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance an...The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance and reliability, their potential use in different fields, the improvement of performance and combined systems, etc. Single-frequency GNSS receivers, which for a long time remained the only category of low-cost GNSS receivers, often limited by their level of accuracy (metric) mainly due to their single-frequency nature, have been joined in the last decade by dual-frequency GNSS receivers developed by certain manufacturers of positioning equipment. These receivers now offer possible alternatives to the relatively expensive conventional (topographic quality) or geodetic receivers and. In this study, the performance of these low-cost dual-frequency receivers was evaluated in static and real-time kinematic GNSS positioning modes. Static positioning was carried out on three points with sessions of 2 h and 4 h over three days with antenna swapping (CHC i50, Leica GS14 and Emlid Reach RS2+). Real-time observations were carried out on eleven (11) points in open, poorly open and not at all open environments, in order to assess not only performance but also receiver sensitivity in environments with a high risk of multipath. The results obtained showed an average agreement of 2 cm in planimetry between the low-cost Emlid RS2+ receiver and the Leica GS14 and CHC i50 receivers. The differences in altimetry are nevertheless greater (sometimes up to decimetres for certain points). Real-time positioning results provided an average convergence of around 1 cm on the E, N and H components with the results from the low-cost Emlid Reach RS2+ and Ublox ZED-F9P receivers and the CHC i50 receiver. Analysis of the results obtained has enabled us to highlight the various issues and challenges associated with this new generation of GNSS receivers, with a view to enhancing their appropriation and optimal integration in the professional and research worlds.展开更多
High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicres...High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.展开更多
Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matl...Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.展开更多
Precision positioning systems driven by linear motors are vulnerable to force disturbances owing to the reduction of gear transmission. The friction, included in the disturbance, can be modeled and compensated to impr...Precision positioning systems driven by linear motors are vulnerable to force disturbances owing to the reduction of gear transmission. The friction, included in the disturbance, can be modeled and compensated to improve the servo performance. This paper proposes a modified Stribeck friction model (SFM) and an optimization algorithm for consistency with the positioning platform. The compensators based on the friction model and disturbance observer (DOB) are simulated. The simulation results show that as compared with the DOB compensator (the velocity recovers by 5.19%), the friction model based compensator (the velocity recovers by 10.66%) exhibits a better performance after adding the disturbance. Moreover, compensation comparisons among the Coulomb friction, traditional SFM, and modified SFM are performed. The experimental results show that the following error with modified SFM compensation improves by 67.67% and 51.63% at a speed of 0.005 m/s and 0.05 m/s, compared with the Coulomb friction compensation. This demonstrates that the proposed model, optimization algorithm, and compensator can reduce the following error effectively.展开更多
Atom localization in a five-level atomic system under the effect of three driving fields and one standing wave field is suggested. A spontaneously emitted photon from the proposed system is measured in a detector. Pre...Atom localization in a five-level atomic system under the effect of three driving fields and one standing wave field is suggested. A spontaneously emitted photon from the proposed system is measured in a detector. Precision position measurement of an atom is controlled via phase and vacuum field detuning without considering the parity violation.展开更多
GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free...GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free combinations. To obtain the optimal positioning precision, a new linear combination method is addressed through the variance-covariance (VCV) of the GPS multi-frequency carrier phase combination equations, and the impact of the positioning precision is analyzed with the changing of the observation errors deduced by the law of error propagation. For the high precision positioning with only one carrier phase combination, the optimal combination method is deduced and further validated by an example of a baseline resolution with 60 km length. The result indicates that this method is the simplest, and the positioning precision is the best. Therefore, it is useful for long baseline quick positioning for different precision requirements in various distances.展开更多
The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the...The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the combination of PPP with only the BeiDou Navigation Satellite System(BDS).However,the Inter-System Bias(ISB)measurement of Multi-GNSS,including the time system offset,the coordinate system difference,and the inter-system hardware delay bias,must be considered for Multi-GNSS data fusion processing.The detected ISB can be well modeled and predicted by using a quadratic model(QM),an autoregressive integrated moving average model(ARIMA),as well as the sliding window strategy(SW).In this study,the experimental results indicate that there is no apparent difference in the ISB between BDS-2 and BDS-3 observations if B1I/B3I signals are used.However,an obvious difference in ISB can be found between BDS-2 and BDS-3 observations if B1I/B3I and B1C/B2a signals are used.Meanwhile,the precision of the Predicted ISB(PISB)on the next day of all stations is about 0.1−0.6 ns.Besides,to effectively utilize the PISB,a new strategy for predicting the PISB for MGPPP is proposed.In the proposed strategy,the PISB is used by adding two virtual observation equations,and an adaptive factor is adopted to balance the contribution of the Observed ISB(OISB)and the PISB to the final estimations of ISB.To validate the effectiveness of the proposed method,some experimental schemes are designed and tested under different satellite availability conditions.The results indicate that in open sky environment,the selective utilization of the PISB achieves almost the same positioning precision of MGPPP as the direct utilization of the PISB,but the convergence time of MGPPP is reduced by 7.1%at most in the north(N),east(E),and up(U)components.In the blocked sky environment,the selective utilization of the PISB contributes to more significant improvement of the positioning precision and convergence time than that in the open sky environment.Compared with the direct utilization of the PISB,the selective utilization of the PISB improves the positioning precision and convergence time by 6.7%and 12.7%at most in the N,E,and U components,respectively.展开更多
This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the To...This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the Total Least Squares(TLS) algorithm is used to prove that the method is effective. Theoretical analysis shows that the algorithm can significantly improve the GPS positioning precision.展开更多
Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satelli...Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.展开更多
Precise Point Positioning(PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring.As atmospheric rean...Precise Point Positioning(PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring.As atmospheric reanalysis data products’ accuracy and spatiotemporal resolution have improved recently, it has become important to apply these products to obtain high-accuracy tropospheric delay parameters, like zenith tropospheric delay(ZTD) and tropospheric horizontal gradient. These tropospheric delay parameters can be applied to PPP to reduce the convergence time and to increase the accuracy in the vertical direction of the position. The European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5) atmospheric reanalysis data is the latest product with a high spatiotemporal resolution released by the European Center for Medium-Range Weather Forecasts(ECMWF). Only a few researches have evaluated the application of ERA5 data to Global Navigation Satellite System(GNSS)PPP. Therefore, this study compared and validated the ZTD products derived from ERA5 data using ZTD values provided by 290 global International GNSS Service(IGS) stations for 2016-2017. The results indicated a stable performance for ZTD, with annual average bias and RMS values of 0.23 cm and 1.09 cm,respectively. Further, GNSS observations for one week in each of the four seasons(spring: DOY 92-98;summer: DOY 199-205;autumn: DOY 275-281;and winter: DOY 22-28) from 34 multi-GNSS experiments(MGEX) stations distributed globally in 2016 were considered to evaluate the performance of ERA5-derived tropospheric delay products in GNSS PPP. The performance of ERA5-enhanced PPP was compared with that of the two standard GNSS PPP schemes(without estimated tropospheric horizontal gradient and with estimated tropospheric horizontal gradient). The results demonstrated that ERA5-enhanced GNSS PPP showed no significant improvement in the convergence times in both the Eastern(E) and Northern(N) directions, while the average convergence time over four weeks in the vertical(U)direction improved by 53.3% and 52.7%, respectively(in the case of pngm station). The average convergence times for each week in the U direction of the northern and southern hemisphere stations indicated a decrease of 16.3%, 12.6%, 9.6%, and 9.1%, and 16.9%, 9.6%, 8.9%, and 14.5%, respectively.Regarding positioning accuracy, ERA5-enhanced PPP showed an improvement of 13.3% and 16.2% over the two standard PPP schemes in the U direction, respectively. No significant improvement in the positioning performance was observed in both the E and N directions. Thus, this study demonstrated the potential application of the ERA5 tropospheric parameters-augmented approach to Beidou navigation and positioning.展开更多
Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method an...Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc.展开更多
A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of l...A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.展开更多
Because the signals of global positioning system (GPS) satellites are susceptible to obstructions in urban environment with many high buildings around, the number of GPS useful satellites is usually less than six. I...Because the signals of global positioning system (GPS) satellites are susceptible to obstructions in urban environment with many high buildings around, the number of GPS useful satellites is usually less than six. In this case, the receiver autonomous integrity monitoring (RAIM) method earmot exclude faulty satellite. In order to improve the performance of RAIM method and obtain the reliable positioning results with five satellites, the series of receiver clock bias (RCB) is regarded as one useful satellite and used to aid RAIM method. From the point of nonlinear series, a grey-Markov model for predicting the RCB series based on grey theory and Markov chain is presented. And then the model is used for aiding RAIM method in order to exclude faulty satellite. Experimental results demonstrate that the prediction model is fit for predicting the RCB series, and with the clock-based RAIM method the faulty satellite can be correctly excluded and the positioning precision of GPS receiver can be improved for the case where there are only five useful satellites.展开更多
A three-dimensional positioning method for global positioning system(GPS)receivers based on three satellites was proposed.In the method,the measurement equation used for positioning calculation was expanded by means o...A three-dimensional positioning method for global positioning system(GPS)receivers based on three satellites was proposed.In the method,the measurement equation used for positioning calculation was expanded by means of two measures.In this case,the measurement equation could be solved,and the function of positioning calculation could be performed.The detailed steps of the method and how to evaluate the positioning precision of the method were given,respectively.The positioning performance of the method was demonstrated through some experiments.It is shown that the method can provide the three-dimensional positioning information under the condition that there are only three useful satellites.展开更多
This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes sig...This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes signal to noise ratio(SNR), multipath(MP), dilution of precision(DOP), and code-minus-carrier combination(CC). The results show that, 5 to 13 satellites are visible at any time in the Arctic Ocean area as of September 2018, which are sufficient for positioning. In the mid-latitude oceanic region and in the Arctic Ocean, the SNR is 25–52 dB Hz and the MP ranges from-2 m to 2 m. As the latitude increases, the DOP values show large variation, which may be related to the distribution of BDS satellites. The CC values of signals B1 I and BIC range from-5 m to 5 m in the mid-latitude sea area and the Arctic Ocean, which means the effect of pseudorange noise is small. Moreover, as to obtain the external precise reference value for GNSS positioning in the Arctic Ocean region is difficult, it is hard to evaluate the accuracy of positioning results. An improved isotropy-based protection level method based on Receiver Autonomous Integrity Monitoring is proposed in the paper, which adopts median filter to smooth the gross errors to assess the precision and reliability of PPP in the Arctic Ocean. At first, the improved algorithm is verified with the data from the International GNSS Service Station Tixi. Then the accuracy of BDS3 PPP in the Arctic Ocean is calculated based on the improved algorithm. Which shows that the kinematic accuracy of PPP can reach the decimeter level in both the horizontal and vertical directions, and it meets the precision requirements of maritime navigation.展开更多
The measurement of atmospheric water vapor (WV) content and variability is important for meteorological and climatological research. A technique for the remote sensing of atmospheric WV content using ground-based Gl...The measurement of atmospheric water vapor (WV) content and variability is important for meteorological and climatological research. A technique for the remote sensing of atmospheric WV content using ground-based Global Positioning System (GPS) has become available, which can routinely achieve accuracies for integrated WV content of 1-2 kg/m2. Some experimental work has shown that the accuracy of WV measurements from a moving platform is comparable to that of (static) land-based receivers. Extending this technique into the marine environment on a moving platform would be greatly beneficial for many aspects of meteorological research, such as the calibration of satellite data, investigation of the air-sea interface, as well as forecasting and climatological studies. In this study, kinematic precise point positioning has been developed to investigate WV in the Arctic Ocean (80°-87°N) and annual variations are obtained for 2008 and 2012 that are identical to those related to the enhanced greenhouse effect.展开更多
The characteristics of present “Beidou” satellite positioning system are analyzed. In order to perfect our country regional satellite positioning system, the idea of “Beidou” geosychronous earth orbit (GEO) sate...The characteristics of present “Beidou” satellite positioning system are analyzed. In order to perfect our country regional satellite positioning system, the idea of “Beidou” geosychronous earth orbit (GEO) satellites combined with some middle earth orbit (MEO) satellites constellation is put forward. The details of general satellite constellation optimized method are described, using this method the multiple positioning constellation design results are gained. And those results belong to two type of sehems, one is 2 GEO plus some MEO satellites and the other is 3 GEO plus some MEO satellites. Through simulation and comparison, among those multiple design results, final optimized regional positioning constellation is given. In order to check the chosen constellation cover performance, the position dilution of preeision(PDOP) is calculated, and with ,satellite constellation simulation software Satlab many coverage performances of the chosen constellation substellar point track, elevation, azimuth and visible satellites number changing situation are also simulated.展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2015CB057500)National Natural Science Foundation of China(Grant Nos.50305035,51575259)Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures,China(Grant No.0315K01)
文摘Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus 〈0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.
文摘The motor’s configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement principle for the motor is proved by experiments. The pulse waveforms are applied to drive the motor to move in steps. The motor has a displacement resolution of 10 nm and a maximum velocity of 0.6 mm/s. It can drive a 200 g slider whose range is 20 mm. A one-dimensional precision positioning platform is fabricated by using the new hybrid piezoelectric motor. The prototype is made up of two servomotors and two piezoelectric motors, which are controlled automatically by a computer. The positioning range of the platform is 10 cm.
基金supported by the National Natural Science Foundation of China(No.51175358)the Natural Science Foundation of Jiangsu Province (No.BK20140345)+2 种基金Colleges and Universities Natural Science Foundation of Jiangsu Province (No.14KJB460025)the National Science Foundation for Post-Doctoral Scientists of China (No.2014M551651)the Natural Science Foundation of Jiangsu Province for Post-Doctoral Scientists (No. 1401073C)
文摘For the smaller thrust,it is difficult to achieve 3Dtrans-scale precision positioning based on previous stick-slip driving.A large thrust trans-scale precision positioning stage is studied based on the inertial stick-slip driving.The process of the movement is divided into two steps,i.e.,the″sliding″phase and the″stickness″phase.In the whole process,the kinematics model of the inertial stick-slip driving is established,and it reveals some factors affecting the velocity of inertial stick-slip driving.Furthermore,a simulation of movement is preformed by Matlab-Simulink software,and the whole process of the inertial stick-slip driving is displayed.After one experimental prototype is designed,the back and forth velocity is tested.Finally,the simulation verifies the accuracy of the kinematics model.
文摘The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance and reliability, their potential use in different fields, the improvement of performance and combined systems, etc. Single-frequency GNSS receivers, which for a long time remained the only category of low-cost GNSS receivers, often limited by their level of accuracy (metric) mainly due to their single-frequency nature, have been joined in the last decade by dual-frequency GNSS receivers developed by certain manufacturers of positioning equipment. These receivers now offer possible alternatives to the relatively expensive conventional (topographic quality) or geodetic receivers and. In this study, the performance of these low-cost dual-frequency receivers was evaluated in static and real-time kinematic GNSS positioning modes. Static positioning was carried out on three points with sessions of 2 h and 4 h over three days with antenna swapping (CHC i50, Leica GS14 and Emlid Reach RS2+). Real-time observations were carried out on eleven (11) points in open, poorly open and not at all open environments, in order to assess not only performance but also receiver sensitivity in environments with a high risk of multipath. The results obtained showed an average agreement of 2 cm in planimetry between the low-cost Emlid RS2+ receiver and the Leica GS14 and CHC i50 receivers. The differences in altimetry are nevertheless greater (sometimes up to decimetres for certain points). Real-time positioning results provided an average convergence of around 1 cm on the E, N and H components with the results from the low-cost Emlid Reach RS2+ and Ublox ZED-F9P receivers and the CHC i50 receiver. Analysis of the results obtained has enabled us to highlight the various issues and challenges associated with this new generation of GNSS receivers, with a view to enhancing their appropriation and optimal integration in the professional and research worlds.
基金supported by the National Key Basic Research Program of China (2011CB013104)National Natural Science Foundation of China (U1134004)+2 种基金Guangdong Provincial Natural Science Foundation (2015A030312008)Science and Technology Program of Guangzhou (201510010281)Guangdong Provincial Science and Technology Plan (2013B010402014)
文摘High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.
基金supported by the International S&T Cooperation Program of China(GrantNo.2010DFB43660)National Natural Science Foundation of China(Grant No.51375286)Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.16JF005)
文摘Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.
基金Funding was provided by Shanghai Municipal Natural Science Foundation (Grant No. 13ZR1415800), National Natural Science Foundation of China (Grant No. 61573238), Innovation Program of Shanghai Municipal Education Commission of China (Grant No. 14YZ008), Jiangsu Key Laboratory for Advanced Robotics Technology Foundation (Grant No. JAR201304).
文摘Precision positioning systems driven by linear motors are vulnerable to force disturbances owing to the reduction of gear transmission. The friction, included in the disturbance, can be modeled and compensated to improve the servo performance. This paper proposes a modified Stribeck friction model (SFM) and an optimization algorithm for consistency with the positioning platform. The compensators based on the friction model and disturbance observer (DOB) are simulated. The simulation results show that as compared with the DOB compensator (the velocity recovers by 5.19%), the friction model based compensator (the velocity recovers by 10.66%) exhibits a better performance after adding the disturbance. Moreover, compensation comparisons among the Coulomb friction, traditional SFM, and modified SFM are performed. The experimental results show that the following error with modified SFM compensation improves by 67.67% and 51.63% at a speed of 0.005 m/s and 0.05 m/s, compared with the Coulomb friction compensation. This demonstrates that the proposed model, optimization algorithm, and compensator can reduce the following error effectively.
文摘Atom localization in a five-level atomic system under the effect of three driving fields and one standing wave field is suggested. A spontaneously emitted photon from the proposed system is measured in a detector. Precision position measurement of an atom is controlled via phase and vacuum field detuning without considering the parity violation.
基金Supported by the Key Laboratory of Geological Hazards on Three Gorges Reservoir Area,Ministry of Education, China(No.2006KDZ05).
文摘GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free combinations. To obtain the optimal positioning precision, a new linear combination method is addressed through the variance-covariance (VCV) of the GPS multi-frequency carrier phase combination equations, and the impact of the positioning precision is analyzed with the changing of the observation errors deduced by the law of error propagation. For the high precision positioning with only one carrier phase combination, the optimal combination method is deduced and further validated by an example of a baseline resolution with 60 km length. The result indicates that this method is the simplest, and the positioning precision is the best. Therefore, it is useful for long baseline quick positioning for different precision requirements in various distances.
基金supported by“The National Key Research and Development Program of China(No.2020YFA0713502)”“The National Natural Science Foundation of China(No.41874039)”+1 种基金“Jiangsu National Science Foundation(No.BK20191342)”“Fundamental Research Funds for the Central Universities(No.2019ZDPY-RH03)”。
文摘The combination of Precision Point Positioning(PPP)with Multi-Global Navigation Satellite System(MultiGNSS),called MGPPP,can improve the positioning precision and shorten the convergence time more effectively than the combination of PPP with only the BeiDou Navigation Satellite System(BDS).However,the Inter-System Bias(ISB)measurement of Multi-GNSS,including the time system offset,the coordinate system difference,and the inter-system hardware delay bias,must be considered for Multi-GNSS data fusion processing.The detected ISB can be well modeled and predicted by using a quadratic model(QM),an autoregressive integrated moving average model(ARIMA),as well as the sliding window strategy(SW).In this study,the experimental results indicate that there is no apparent difference in the ISB between BDS-2 and BDS-3 observations if B1I/B3I signals are used.However,an obvious difference in ISB can be found between BDS-2 and BDS-3 observations if B1I/B3I and B1C/B2a signals are used.Meanwhile,the precision of the Predicted ISB(PISB)on the next day of all stations is about 0.1−0.6 ns.Besides,to effectively utilize the PISB,a new strategy for predicting the PISB for MGPPP is proposed.In the proposed strategy,the PISB is used by adding two virtual observation equations,and an adaptive factor is adopted to balance the contribution of the Observed ISB(OISB)and the PISB to the final estimations of ISB.To validate the effectiveness of the proposed method,some experimental schemes are designed and tested under different satellite availability conditions.The results indicate that in open sky environment,the selective utilization of the PISB achieves almost the same positioning precision of MGPPP as the direct utilization of the PISB,but the convergence time of MGPPP is reduced by 7.1%at most in the north(N),east(E),and up(U)components.In the blocked sky environment,the selective utilization of the PISB contributes to more significant improvement of the positioning precision and convergence time than that in the open sky environment.Compared with the direct utilization of the PISB,the selective utilization of the PISB improves the positioning precision and convergence time by 6.7%and 12.7%at most in the N,E,and U components,respectively.
文摘This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the Total Least Squares(TLS) algorithm is used to prove that the method is effective. Theoretical analysis shows that the algorithm can significantly improve the GPS positioning precision.
基金partially sponsored by the National 973 Project of China(2013CB733303)partially supported by the postgraduate independent exploration project of Central South University(2014zzts249)
文摘Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.
基金funded by the National Natural Foundation of China (Grant No.4170402741864002)+2 种基金the Guangxi Natural Science Foundation of China (2020GXNSFBA297145)the “Ba Gui Scholars” program of the provincial government of Guangxithe Innovation Project of Guangxi Graduate Education (Grant No. YCSW20211209)
文摘Precise Point Positioning(PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring.As atmospheric reanalysis data products’ accuracy and spatiotemporal resolution have improved recently, it has become important to apply these products to obtain high-accuracy tropospheric delay parameters, like zenith tropospheric delay(ZTD) and tropospheric horizontal gradient. These tropospheric delay parameters can be applied to PPP to reduce the convergence time and to increase the accuracy in the vertical direction of the position. The European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5) atmospheric reanalysis data is the latest product with a high spatiotemporal resolution released by the European Center for Medium-Range Weather Forecasts(ECMWF). Only a few researches have evaluated the application of ERA5 data to Global Navigation Satellite System(GNSS)PPP. Therefore, this study compared and validated the ZTD products derived from ERA5 data using ZTD values provided by 290 global International GNSS Service(IGS) stations for 2016-2017. The results indicated a stable performance for ZTD, with annual average bias and RMS values of 0.23 cm and 1.09 cm,respectively. Further, GNSS observations for one week in each of the four seasons(spring: DOY 92-98;summer: DOY 199-205;autumn: DOY 275-281;and winter: DOY 22-28) from 34 multi-GNSS experiments(MGEX) stations distributed globally in 2016 were considered to evaluate the performance of ERA5-derived tropospheric delay products in GNSS PPP. The performance of ERA5-enhanced PPP was compared with that of the two standard GNSS PPP schemes(without estimated tropospheric horizontal gradient and with estimated tropospheric horizontal gradient). The results demonstrated that ERA5-enhanced GNSS PPP showed no significant improvement in the convergence times in both the Eastern(E) and Northern(N) directions, while the average convergence time over four weeks in the vertical(U)direction improved by 53.3% and 52.7%, respectively(in the case of pngm station). The average convergence times for each week in the U direction of the northern and southern hemisphere stations indicated a decrease of 16.3%, 12.6%, 9.6%, and 9.1%, and 16.9%, 9.6%, 8.9%, and 14.5%, respectively.Regarding positioning accuracy, ERA5-enhanced PPP showed an improvement of 13.3% and 16.2% over the two standard PPP schemes in the U direction, respectively. No significant improvement in the positioning performance was observed in both the E and N directions. Thus, this study demonstrated the potential application of the ERA5 tropospheric parameters-augmented approach to Beidou navigation and positioning.
基金supported partially by the National Natural Science Foundation of China(No.40974004 and 40974016)the Key Laboratory of Surveying and Mapping Technology on Island and Reef of NASMG,China(No.2011A01)the Key Laboratory of Advanced Surveying Engineering of NASMG,China(No.TJES1101)
文摘Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc.
基金Project(41004011)supported by the National Natural Science Foundation of ChinaProject(2014M550425)supported by the China Postdoctoral Science Foundation
文摘A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.
基金Project(20090580013) supported by the Aeronautic Science Foundation of ChinaProject(ZYGX2010J119) supported by the Fundamental Research Funds for the Central Universities,China
文摘Because the signals of global positioning system (GPS) satellites are susceptible to obstructions in urban environment with many high buildings around, the number of GPS useful satellites is usually less than six. In this case, the receiver autonomous integrity monitoring (RAIM) method earmot exclude faulty satellite. In order to improve the performance of RAIM method and obtain the reliable positioning results with five satellites, the series of receiver clock bias (RCB) is regarded as one useful satellite and used to aid RAIM method. From the point of nonlinear series, a grey-Markov model for predicting the RCB series based on grey theory and Markov chain is presented. And then the model is used for aiding RAIM method in order to exclude faulty satellite. Experimental results demonstrate that the prediction model is fit for predicting the RCB series, and with the clock-based RAIM method the faulty satellite can be correctly excluded and the positioning precision of GPS receiver can be improved for the case where there are only five useful satellites.
基金Project (ZYGX2010J119)supported by the Fundamental Research Funds for the Central Universities of China
文摘A three-dimensional positioning method for global positioning system(GPS)receivers based on three satellites was proposed.In the method,the measurement equation used for positioning calculation was expanded by means of two measures.In this case,the measurement equation could be solved,and the function of positioning calculation could be performed.The detailed steps of the method and how to evaluate the positioning precision of the method were given,respectively.The positioning performance of the method was demonstrated through some experiments.It is shown that the method can provide the three-dimensional positioning information under the condition that there are only three useful satellites.
基金The Science and Technology of Henan Province under contract No.212102310029the National Natural Science Founation Cultivation Project of Xuchang University under contract No.2022GJPY007the Educational Teaching Research and Practice Project of Xuchang University under contract No.XCU2021-YB-024.
文摘This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes signal to noise ratio(SNR), multipath(MP), dilution of precision(DOP), and code-minus-carrier combination(CC). The results show that, 5 to 13 satellites are visible at any time in the Arctic Ocean area as of September 2018, which are sufficient for positioning. In the mid-latitude oceanic region and in the Arctic Ocean, the SNR is 25–52 dB Hz and the MP ranges from-2 m to 2 m. As the latitude increases, the DOP values show large variation, which may be related to the distribution of BDS satellites. The CC values of signals B1 I and BIC range from-5 m to 5 m in the mid-latitude sea area and the Arctic Ocean, which means the effect of pseudorange noise is small. Moreover, as to obtain the external precise reference value for GNSS positioning in the Arctic Ocean region is difficult, it is hard to evaluate the accuracy of positioning results. An improved isotropy-based protection level method based on Receiver Autonomous Integrity Monitoring is proposed in the paper, which adopts median filter to smooth the gross errors to assess the precision and reliability of PPP in the Arctic Ocean. At first, the improved algorithm is verified with the data from the International GNSS Service Station Tixi. Then the accuracy of BDS3 PPP in the Arctic Ocean is calculated based on the improved algorithm. Which shows that the kinematic accuracy of PPP can reach the decimeter level in both the horizontal and vertical directions, and it meets the precision requirements of maritime navigation.
基金Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract Nos CHINARE2013-03-03 and CHINARE 2013-04-03the National Oceanic Commonweal Research Project under contract No.201105001the National Natural Science Foundation of China under contract No.41374043
文摘The measurement of atmospheric water vapor (WV) content and variability is important for meteorological and climatological research. A technique for the remote sensing of atmospheric WV content using ground-based Global Positioning System (GPS) has become available, which can routinely achieve accuracies for integrated WV content of 1-2 kg/m2. Some experimental work has shown that the accuracy of WV measurements from a moving platform is comparable to that of (static) land-based receivers. Extending this technique into the marine environment on a moving platform would be greatly beneficial for many aspects of meteorological research, such as the calibration of satellite data, investigation of the air-sea interface, as well as forecasting and climatological studies. In this study, kinematic precise point positioning has been developed to investigate WV in the Arctic Ocean (80°-87°N) and annual variations are obtained for 2008 and 2012 that are identical to those related to the enhanced greenhouse effect.
文摘The characteristics of present “Beidou” satellite positioning system are analyzed. In order to perfect our country regional satellite positioning system, the idea of “Beidou” geosychronous earth orbit (GEO) satellites combined with some middle earth orbit (MEO) satellites constellation is put forward. The details of general satellite constellation optimized method are described, using this method the multiple positioning constellation design results are gained. And those results belong to two type of sehems, one is 2 GEO plus some MEO satellites and the other is 3 GEO plus some MEO satellites. Through simulation and comparison, among those multiple design results, final optimized regional positioning constellation is given. In order to check the chosen constellation cover performance, the position dilution of preeision(PDOP) is calculated, and with ,satellite constellation simulation software Satlab many coverage performances of the chosen constellation substellar point track, elevation, azimuth and visible satellites number changing situation are also simulated.