Surface Ag granular packs(SAgPs) have been fabricated from dual-phase Ag_(35.5)Zn_(64.5) precursor alloy consisting of both e and c phases by using a facile one-step triangle wave potential cycling in 0.5 mol·L^(...Surface Ag granular packs(SAgPs) have been fabricated from dual-phase Ag_(35.5)Zn_(64.5) precursor alloy consisting of both e and c phases by using a facile one-step triangle wave potential cycling in 0.5 mol·L^(-1) KOH.During the continuous potential cyclic sweeping, the c phases preferentially dissolve during the anodic scan and dominant reduction reactions of Ag cations lead to redeposition and accumulation of Ag atoms together to form SAg Ps during cathodic scan. The e phases stay inactive to form a continuous skeleton in the inner regions. SAg Ps with an average particle size of 94-129 nm can be obtained at scan rates of 25, 50 and 100 mV·s^(-1) for 100 triangle wave potential cycles. SAgPs formed at a scan rate of 50 mV·s^(-1) exhibit superior oxygen reduction reaction performances with the onset potential of 0.93 V, half-wave potential of 0.72 V and an electron transfer number of 4.0.The above-mentioned SAgPs have superior stabilities as ORR catalysts.展开更多
基金financially supported by the State Key Laboratory of Advanced Metals and Materials (No.2018-ZD04)the State Key Laboratory of Metal Material for Marine Equipment and Application (No. SKLMEA-K201806)+2 种基金the Natural Science Foundation of China (Nos. 51671106 and 51931008)the Natural Science Foundation of Jiangsu Province (Nos. BK20171424and BE2019119)the National Defense Basic Scientific Research Program of China (No. JCKY08414C020)。
文摘Surface Ag granular packs(SAgPs) have been fabricated from dual-phase Ag_(35.5)Zn_(64.5) precursor alloy consisting of both e and c phases by using a facile one-step triangle wave potential cycling in 0.5 mol·L^(-1) KOH.During the continuous potential cyclic sweeping, the c phases preferentially dissolve during the anodic scan and dominant reduction reactions of Ag cations lead to redeposition and accumulation of Ag atoms together to form SAg Ps during cathodic scan. The e phases stay inactive to form a continuous skeleton in the inner regions. SAg Ps with an average particle size of 94-129 nm can be obtained at scan rates of 25, 50 and 100 mV·s^(-1) for 100 triangle wave potential cycles. SAgPs formed at a scan rate of 50 mV·s^(-1) exhibit superior oxygen reduction reaction performances with the onset potential of 0.93 V, half-wave potential of 0.72 V and an electron transfer number of 4.0.The above-mentioned SAgPs have superior stabilities as ORR catalysts.