期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The precursor compound of two types of ZnSe magic-sized clusters
1
作者 Xingxia Yang Meng Zhang +3 位作者 Qiu Shen Yang Li Chaoran Luan Kui Yu 《Nano Research》 SCIE EI CSCD 2022年第1期465-474,共10页
Precursor compounds(PCs)link quantum dots(QDs)and magic-sized clusters(MSCs),which is pivotal in the conversion between QDs and MSCs.Here,for the first time,we report the transformation,synthesis,and composition of a ... Precursor compounds(PCs)link quantum dots(QDs)and magic-sized clusters(MSCs),which is pivotal in the conversion between QDs and MSCs.Here,for the first time,we report the transformation,synthesis,and composition of a type of ZnSe PCs.ZnSe PCs can be directly transformed to two different MSCs with the assistance of octylamine and acetic acid at room temperature.The two types of MSCs exhibit sharp absorption peaks at 299 and 328 nm which are denoted as MSC-299 and MSC-328.In the preparation of ZnSe PCs,diphenylphosphine(DPP)as an additive plays a key role which not only inhibits the thermal decomposition of Zn precursor,but also acts as a reducing agent to reduce the by-products produced in the reaction.The composition was explored by X-ray photoelectron spectroscopy,energy dispersive spectrometer,matrix-assisted laser desorption/ionization time-of-flight mass spectra with ZnSe PC powder appeared as white powder after purifying by toluene(Tol)and methanol(MeOH).The results indicate that the molar ratio of Zn/Se is 2:1 with a molecular of〜3,350 Da.Therefore,we propose that the molecular formula of ZnSe PCs is Zn_(32)Se_(16).In addition,at the molecular level,the covalent bond of Zn-Se is formed in ZnSe PCs.This study offers a deeper understanding of the transformation from PCs to MSCs and for the first time proposes the composition of PCs.Meanwhile,this research provides us with a new understanding of the role of DPP in the synthesis of colloidal semiconductor nanoparticles. 展开更多
关键词 ZNSE magic-size clusters(MSCs) precursor compounds(PCs) purification composition
原文传递
Precursor compound enabled formation of aqueous-phase CdSe magic-size clusters at room temperature 被引量:1
2
作者 Min Zhao Qingyuan Chen +5 位作者 Yongcheng Zhu Yuehui Liu Chunchun Zhang Gang Jiang Meng Zhang Kui Yu 《Nano Research》 SCIE EI CSCD 2022年第3期2634-2642,共9页
The formation pathway of aqueous-phase colloidal semiconductor magic-size clusters(MSCs)remains unrevealed.In the present work,we demonstrate,for the first time,a precursor compound(PC)-enabled formation pathway of aq... The formation pathway of aqueous-phase colloidal semiconductor magic-size clusters(MSCs)remains unrevealed.In the present work,we demonstrate,for the first time,a precursor compound(PC)-enabled formation pathway of aqueous-phase CdSe MSCs exhibiting a sharp absorption peaking at about 420 nm(MSC-420).The CdSe MSC-420 is synthesized with CdCl2 and selenourea as the respective Cd and Se sources,and with 3-mercaptopropionic acid or L-cysteine as a ligand.Absorption featureless CdSe PCs form first in the aqueous reaction batches,which transform to MSC-420 in the presence of primary amines.The coordination between primary amine and Cd^(2+)on PCs may be responsible to the PC-to-MSC transformation.Upon increasing the reactant concentrations or decreasing the CdCl_(2)-ligand feed molar ratios,the Cd precursor self-assembles into large aggregates,which may encapsulate the resulting CdSe PCs and inhibit their transformation to MSC-420.The present study sheds essential light on the syntheses and formation mechanisms of nanocrystals. 展开更多
关键词 aqueous magic-size cluster precursor compound formation pathway self-assembly precursor configuration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部