Zn/Sn/Cu (CZT) stacks were prepared by RF magnetron sputtering. The stacks were pretreated at different tem- peratures (200℃, 300 ℃, 350 ℃, and 400 ℃) for 0.5 h and then followed by sulfurization at 500℃ for ...Zn/Sn/Cu (CZT) stacks were prepared by RF magnetron sputtering. The stacks were pretreated at different tem- peratures (200℃, 300 ℃, 350 ℃, and 400 ℃) for 0.5 h and then followed by sulfurization at 500℃ for 2 h. Then, the structures, morphologies, and optical properties of the as-obtained Cu2ZnSnS4 (CZTS) films were studied by x-ray diffraction (XRD), Raman spectroscopy, UV-Vis-NIR, scanning electron microscope (SEM), and energy-dispersive x-ray spectroscopy (EDX). The XRD and Raman spectroscopy results indicated that the sample pretreated at 350℃ had no secondary phase and good crystallization. At the same time, SEM confirmed that it had large and dense grains. According to the UV-Vis-NIR spectrum, the sample had an absorption coefficient larger than 10^4 cm-1 in the visible light range and a band gap close to 1.5 eV.展开更多
基金supported by Funding for Outstanding Doctoral Dissertation in NUAA,China(Grant No.BCXJ13-12)the Jiangsu Innovation Program for Graduate Education,China(Grant No.CXLX13 150)+2 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.61176062)the Science and Technology Supporting Project of Jiangsu Province,China(Grant No.BE2012103)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Zn/Sn/Cu (CZT) stacks were prepared by RF magnetron sputtering. The stacks were pretreated at different tem- peratures (200℃, 300 ℃, 350 ℃, and 400 ℃) for 0.5 h and then followed by sulfurization at 500℃ for 2 h. Then, the structures, morphologies, and optical properties of the as-obtained Cu2ZnSnS4 (CZTS) films were studied by x-ray diffraction (XRD), Raman spectroscopy, UV-Vis-NIR, scanning electron microscope (SEM), and energy-dispersive x-ray spectroscopy (EDX). The XRD and Raman spectroscopy results indicated that the sample pretreated at 350℃ had no secondary phase and good crystallization. At the same time, SEM confirmed that it had large and dense grains. According to the UV-Vis-NIR spectrum, the sample had an absorption coefficient larger than 10^4 cm-1 in the visible light range and a band gap close to 1.5 eV.