期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Applications of Conditional Nonlinear Optimal Perturbation in Predictability Study and Sensitivity Analysis of Weather and Climate 被引量:8
1
作者 穆穆 段晚锁 +1 位作者 徐辉 王波 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第6期992-1002,共11页
Considering the limitation of the linear theory of singular vector (SV), the authors and their collabora- tors proposed conditional nonlinear optimal perturbation (CNOP) and then applied it in the predictability s... Considering the limitation of the linear theory of singular vector (SV), the authors and their collabora- tors proposed conditional nonlinear optimal perturbation (CNOP) and then applied it in the predictability study and the sensitivity analysis of weather and climate system. To celebrate the 20th anniversary of Chinese National Committee for World Climate Research Programme (WCRP), this paper is devoted to reviewing the main results of these studies. First, CNOP represents the initial perturbation that has largest nonlinear evolution at prediction time, which is different from linear singular vector (LSV) for the large magnitude of initial perturbation or/and the long optimization time interval. Second, CNOP, rather than linear singular vector (LSV), represents the initial anomaly that evolves into ENSO events most probably. It is also the CNOP that induces the most prominent seasonal variation of error growth for ENSO predictability; furthermore, CNOP was applied to investigate the decadal variability of ENSO asymmetry. It is demonstrated that the changing nonlinearity causes the change of ENSO asymmetry. Third, in the studies of the sensitivity and stability of ocean's thermohaline circulation (THC), the nonlinear asymmetric response of THC to finite amplitude of initial perturbations was revealed by CNOP. Through this approach the passive mechanism of decadal variation of THC was demonstrated; Also the authors studies the instability and sensitivity analysis of grassland ecosystem by using CNOP and show the mechanism of the transitions between the grassland and desert states. Finally, a detailed discussion on the results obtained by CNOP suggests the applicability of CNOP in predictability studies and sensitivity analysis. 展开更多
关键词 predictability weather climate optimal perturbation
下载PDF
The Predictability Problems in Numerical Weather and Climate Prediction 被引量:11
2
作者 穆穆 段晚锁 王家城 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第2期191-204,共14页
The uncertainties caused by the errors of the initial states and the parameters in the numerical model are investigated. Three problems of predictability in numerical weather and climate prediction are proposed, which... The uncertainties caused by the errors of the initial states and the parameters in the numerical model are investigated. Three problems of predictability in numerical weather and climate prediction are proposed, which are related to the maximum predictable time, the maximum prediction error, and the maximum admissible errors of the initial values and the parameters in the model respectively. The three problems are then formulated into nonlinear optimization problems. Effective approaches to deal with these nonlinear optimization problems are provided. The Lorenz’ model is employed to demonstrate how to use these ideas in dealing with these three problems. 展开更多
关键词 predictability weather climate Numerical model Optimization
下载PDF
Recent Advances in Predictability Studies in China (1999-2002) 被引量:19
3
作者 穆穆 段晚锁 丑纪范 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第3期437-443,共7页
Since the last International Union of Geodesy and Geophysics (IUGG) General Assembly (1999), the predictability studies in China have made further progress during the period of 1999-2002. Firstly, three predictability... Since the last International Union of Geodesy and Geophysics (IUGG) General Assembly (1999), the predictability studies in China have made further progress during the period of 1999-2002. Firstly, three predictability sub-problems in numerical weather and climate prediction are classified, which are concerned with the maximum predictability time, the maximum prediction error, and the maximum allowable initial error, and then they are reduced into three nonlinear optimization problems. Secondly, the concepts of the nonlinear singular vector (NSV) and conditional nonlinear optimal perturbation (CNOP) are proposed, which have been utilized to study the predictability of numerical weather and climate prediction. The results suggest that the nonlinear characteristics of the motions of atmosphere and oceans can be revealed by NSV and CNOP. Thirdly, attention has also been paid to the relations between the predictability and spatial-temporal scale, and between the modei predictability and the machine precision, of which the investigations disclose the importance of the spatial-temporal scale and machine precision in the study of predictability. Also the cell-to-cell mapping is adopted to analyze globally the predictability of climate, which could provide a new subject to the research workers. Furthermore, the predictability of the summer rainfall in China is investigated by using the method of correlation coefficients. The results demonstrate that the predictability of summer rainfall is different in different areas of China. Analysis of variance, which is one of the statistical methods applicable to the study of predictability, is also used to study the potential predictability of monthly mean temperature in China, of which the conclusion is that the monthly mean temperature over China is potentially predictable at a statistical significance Ievel of 0.10. In addition, in the analysis of the predictability of the T106 objective analysis/forecasting field, the variance and the correlation coemcient are calculated to explore the distribution characteristics of the mean-square errors. Finally, the predictability of short-term climate prediction is investigated by using statistical methods or numerical simulation methods. It is demonstrated that the predictability of short-terrn climate in China depends not only on the region of China being investigated, but also on the time scale and the atmospheric internai dynamical process. 展开更多
关键词 predictability prediction perturbation computational uncertainty weather climate
下载PDF
Progress in Predictability Studies in China (2003-2006) 被引量:2
4
作者 段晚锁 姜智娜 徐辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第6期1086-1098,共13页
Since the last International Union of Geodesy and Geophysics General Assembly (2003), predictability studies in China have made significant progress. For dynamic forecasts, two novel approaches of conditional nonlin... Since the last International Union of Geodesy and Geophysics General Assembly (2003), predictability studies in China have made significant progress. For dynamic forecasts, two novel approaches of conditional nonlinear optimal perturbation and nonlinear local Lyapunov exponents were proposed to cope with the predictability problems of weather and climate, which are superior to the corresponding linear theory. A possible mechanism for the "spring predictability barrier" phenomenon for the E1 Nifio-Southern Oscillation (ENSO) was provided based on a theoretical model. To improve the forecast skill of an intermediate coupled ENSO model, a new initialization scheme was developed, and its applicability was illustrated by hindcast experiments. Using the reconstruction phase space theory and the spatio-temporal series predictive method, Chinese scientists also proposed a new approach to improve dynamical extended range (monthly) prediction and successfully applied it to the monthly-scale predictability of short-term climate variations. In statistical forecasts, it was found that the effects of sea surface temperature on precipitation in China have obvious spatial and temporal distribution features, and that summer precipitation patterns over east China are closely related to the northern atmospheric circulation. For ensemble forecasts, a new initial perturbation method was used to forecast heavy rain in Guangdong and Fujian Provinces on 8 June 1998. Additionally, the ensemble forecast approach was also used for the prediction of a tropical typhoons. A new downscaling model consisting of dynamical and statistical methods was provided to improve the prediction of the monthly mean precipitation. This new downscaling model showed a relatively higher score than the issued operational forecast. 展开更多
关键词 predictability prediction perturbation weather climate
下载PDF
数值天气预报和气候预测可预报性研究的若干动力学方法 被引量:11
5
作者 段晚锁 丁瑞强 周菲凡 《气候与环境研究》 CSCD 北大核心 2013年第4期524-538,共15页
简要回顾了数值天气预报和气候预测可预报性研究的若干动力学方法,包括用于研究第一类可预报性问题的线性奇异向量(LSV)和条件非线性最优初始扰动(CNOP-I)方法,以及Lyapunov指数和非线性局部Lyapunov指数方法。前两种方法用于研究预报... 简要回顾了数值天气预报和气候预测可预报性研究的若干动力学方法,包括用于研究第一类可预报性问题的线性奇异向量(LSV)和条件非线性最优初始扰动(CNOP-I)方法,以及Lyapunov指数和非线性局部Lyapunov指数方法。前两种方法用于研究预报或预测的预报误差问题,可以用于估计天气预报和气候预测的最大预报误差,而且根据导致最大预报误差的初始误差结构的信息,这两种方法可以用于确定预报或预测的初值敏感区。应该指出的是,LSV是基于线性化模式,对于描述非线性大气和海洋的运动具有局限性。因而,对于非线性模式,应该选择使用CNOP-I估计最大预报误差。Lyapunov指数和非线性局部Lyapunov指数可以用于研究第一类可预报性问题中的预报时限问题,前者是基于线性模式,不能解释非线性对预报时限的影响,而非线性局部Lyapunov指数方法则考虑了非线性的影响,能够较好地估计实际天气和气候的预报时限。第二类可预报性问题的研究方法相对较少,本文仅介绍了由我国科学家提出的关于模式参数扰动的条件非线性最优参数扰动(CNOP-P)方法,该方法可以用于寻找到对预报有最大影响的参数扰动,并可以进一步确定哪些参数最应该利用观测资料进行校准。另一方面,通过对比CNOP-I和CNOP-P对预报误差的影响,可以判断导致预报不确定性的主要误差因子,进而指导人们着力改进模式或者初始场。 展开更多
关键词 天气 气候 可预报性 最优扰动 非线性局部Lyapunov指数
下载PDF
条件非线性最优扰动在可预报性问题研究中的应用 被引量:8
6
作者 穆穆 段晚锁 《大气科学》 CSCD 北大核心 2013年第2期281-296,共16页
本文总结了近年来条件非线性最优扰动方法的应用研究的主要进展。主要包括四个方面:(1)将条件非线性最优扰动(CNOP)方法拓展到既考虑初始扰动又考虑模式参数扰动,形成了拓展的CNOP方法。拓展的CNOP方法不仅能够应用于研究分别由初始误... 本文总结了近年来条件非线性最优扰动方法的应用研究的主要进展。主要包括四个方面:(1)将条件非线性最优扰动(CNOP)方法拓展到既考虑初始扰动又考虑模式参数扰动,形成了拓展的CNOP方法。拓展的CNOP方法不仅能够应用于研究分别由初始误差和模式参数误差导致的可预报性问题,而且能够用于探讨初始误差和模式参数误差同时存在的情形;(2)将拓展的CNOP方法分别应用于ENSO和黑潮可预报性研究,考察了初始误差和模式参数误差对其可预报性的影响,揭示了初始误差在导致ENSO和黑潮大弯曲路径预报不确定性中的重要作用;(3)考察了阻塞事件发生的最优前期征兆(OPR)以及导致其预报不确定性的最优增长初始误差(OGR),揭示了OPR和OGR空间模态及其演变机制的相似性及其局地性特征;(4)研究了台风预报的目标观测问题,用CNOP方法确定了台风预报的目标观测敏感区,通过观测系统模拟试验(OSSEs)和/或观测系统试验(OSEs),表明了CNOP敏感区在改进台风预报中的有效性。具体地,台风OGR的主要误差分布在某一特定区域,空间分布具有明显的局地性特征,在台风OGR的局地性区域增加观测,有效改进了台风的预报技巧,该区域代表了台风预报的初值敏感区。事实上,上述ElNi?o事件、黑潮路径变异以及阻塞事件的OGR的空间分布也具有明显的局地性特征,这些事件的OGR刻画的局地性区域可能也代表了初值敏感区。 展开更多
关键词 天气 气候 可预报性 最优扰动
下载PDF
非线性优化方法在大气和海洋科学数值研究中的若干应用 被引量:9
7
作者 段晚锁 穆穆 《应用数学和力学》 CSCD 北大核心 2005年第5期585-594,共10页
 控制大气和海洋运动的模式是复杂的非线性模式,在考虑到线性奇异向量和线性奇异值只能描述切线性模式有效时段内小扰动发展的情况下,介绍了作者们近年来用非线性优化方法数值研究大气和海洋科学的有关工作,其中包括非线性奇异向量和...  控制大气和海洋运动的模式是复杂的非线性模式,在考虑到线性奇异向量和线性奇异值只能描述切线性模式有效时段内小扰动发展的情况下,介绍了作者们近年来用非线性优化方法数值研究大气和海洋科学的有关工作,其中包括非线性奇异向量和非线性奇异值、条件非线性最优扰动、以及它们在数值天气和气候可预报性研究中的应用· 结果表明,上述非线性优化方法在很大程度上揭示了大气和海洋运动的非线性特征;此外,对可预报性问题的新分类也做了详细介绍,即最大可预报时间、最大预报误差和最大允许初始误差· 这种分类的应用背景是针对数值天气预报和气候预测产品的评价;最后,讨论了数值模式敏感性分析的非线性优化方法,该方法在一定条件下可以定量识别模式误差和初始误差。 展开更多
关键词 非线性优化 天气 气候 可预报性 敏感性分析
下载PDF
模式含有开关时遗传算法求解条件非线性最优扰动的有效性研究 被引量:5
8
作者 方昌銮 郑琴 《热带气象学报》 CSCD 北大核心 2009年第3期366-372,共7页
在基于条件非线性最优扰动(CNOP)的台风适应性观测研究中,针对预报模式的湿物理参数化产生的"on-off"开关导致传统伴随方法不能为最优化过程提供正确梯度这一现象,将模式含有"on-off"开关时求解CNOP的问题视为非光... 在基于条件非线性最优扰动(CNOP)的台风适应性观测研究中,针对预报模式的湿物理参数化产生的"on-off"开关导致传统伴随方法不能为最优化过程提供正确梯度这一现象,将模式含有"on-off"开关时求解CNOP的问题视为非光滑最优化问题,引入遗传算法,在给出详细的算法流程后,以一个在强迫项中含"on-off"开关的理想模式,分析了"on-off"开关对求解CNOP的影响,三个数值试验检验了模式含有"on-off"开关时遗传算法求解CNOP的有效性,并分析了不同初始种群对最优化结果的影响。结果显示,所采用的含有"on-off"开关的理想模式下,遗传算法能有效求解CNOP,最后对遗传算法求解CNOP的优缺点进行了详细讨论。 展开更多
关键词 天气预报 台风适应性观测 遗传算法 条件非线性最优扰动 开关 湿物理参数化
下载PDF
APPLICATIONS OF NONLINEAR OPTIMIZATION METHODTO NUMERICAL STUDIES OF ATMOSPHERICAND OCEANIC SCIENCES
9
作者 段晚锁 穆穆 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第5期636-646,共11页
Linear singular vector and linear singular value can only describe the evolution of sufficiently small perturbations during the period in which the tangent linear model is valid. With this in mind,the applications of ... Linear singular vector and linear singular value can only describe the evolution of sufficiently small perturbations during the period in which the tangent linear model is valid. With this in mind,the applications of nonlinear optimization methods to the atmospheric and oceanic sciences are introduced, which include nonlinear singular vector (NSV) and nonlinear singular value (NSVA), conditional nonlinear optimal perturbation (CNOP), and their applications to the studies of predictability in numerical weather and climate prediction. The results suggest that the nonlinear characteristics of the motions of atmosphere and oceans can be explored by NSV and CNOP. Also attentions are paid to the introduction of the classification of predictability problems, which are related to the maximum predictable time, the maximum prediction error, and the maximum allowing error of initial value and the parameters. All the information has the background of application to the evaluation of products of numerical weather and climate prediction. Furthermore the nonlinear optimization methods of the sensitivity analysis with numerical model are also introduced, which can give a quantitative assessment whether a numerical model is able to simulate the observations and find the initial field that yield the optimal simulation. Finally, the difficulties in the lack of ripe algorithms are also discussed, which leave future work to both computational mathematics and scientists in geophysics. 展开更多
关键词 nonlinear optimization weather climate predictability sensitivity analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部