期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Composition optimization and performance prediction for ultra-stable water-based aerosol based on thermodynamic entropy theory
1
作者 Tingting Kang Canjun Yan +6 位作者 Xinying Zhao Jingru Zhao Zixin Liu Chenggong Ju Xinyue Zhang Yun Zhang Yan Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期437-446,共10页
Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th... Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security. 展开更多
关键词 Ultra-stable Water-based aerosol Thermodynamic entropy Composition optimization performance prediction
下载PDF
Two-Way Neural Network Performance PredictionModel Based onKnowledge Evolution and Individual Similarity
2
作者 Xinzheng Wang Bing Guo Yan Shen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1183-1206,共24页
Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academi... Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academicrelateddata in the face-to-face physical teaching environment is usually sparsity,and the sample size is relativelysmall.It makes building models to predict students’performance accurately in such an environment even morechallenging.This paper proposes a Two-WayNeuralNetwork(TWNN)model based on the bidirectional recurrentneural network and graph neural network to predict students’next semester’s course performance using only theirprevious course achievements.Extensive experiments on a real dataset show that our model performs better thanthe baselines in many indicators. 展开更多
关键词 COMPUTER EDUCATION performance prediction deep learning
下载PDF
A Stacking Machine Learning Model for Student Performance Prediction Based on Class Activities in E-Learning
3
作者 Mohammad Javad Shayegan Rosa Akhtari 《Computer Systems Science & Engineering》 2024年第5期1251-1272,共22页
After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation ... After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data,making it an attractive resource for predicting student performance.In this study,we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets.The stacking method was employed for modeling in this research.The proposed model utilized weak learners,including nearest neighbor,decision tree,random forest,enhanced gradient,simple Bayes,and logistic regression algorithms.After a trial-and-error process,the logistic regression algorithm was selected as the final learner for the proposed model.The results of experiments with the above algorithms are reported separately for the pass and fail classes.The findings indicate that the accuracy of the proposed model on the OULAD dataset reached 98%.Overall,the proposed method improved accuracy by 4%on the OULAD dataset. 展开更多
关键词 STACKING E-LEARNING student performance prediction machine learning CLASSIFICATION
下载PDF
Tunnelling performance prediction of cantilever boring machine in sedimentary hard-rock tunnel using deep belief network 被引量:2
4
作者 SONG Zhan-ping CHENG Yun +1 位作者 ZHANG Ze-kun YANG Teng-tian 《Journal of Mountain Science》 SCIE CSCD 2023年第7期2029-2040,共12页
Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in... Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel. 展开更多
关键词 Urban metro tunnel Cantilever boring machine Hard rock tunnel performance prediction model Linear regression Deep belief network
下载PDF
Predicted High Thermoelectric Performance of Quasi-Two-Dimensional Compound GeAs Using First-Principles Calculations
5
作者 邹代峰 余传斌 +1 位作者 李宇豪 欧云 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期80-83,共4页
The electronic structure of binary quasi-two-dimensional GeAs is investigated using first-principles calculations, and it is found that the anisotropic structure of the layered compound GeAs brings about the anisotrop... The electronic structure of binary quasi-two-dimensional GeAs is investigated using first-principles calculations, and it is found that the anisotropic structure of the layered compound GeAs brings about the anisotropy of the transport properties. Meanwhile, the band structure of GeAs exhibits a relatively large dispersion near the valence-band maximum in the Z –V direction while it is rather flat in the Z –Γ direction, which is highly desirable for good thermoelectric performance. The calculated partial charge density distribution also reveals that GeAs possesses anisotropic electrical conductivity. Based on the semi-classical Boltzmann transport theory, the anisotropic transport properties are observed, and the optimal doping concentrations are estimated. The temperature dependence transport properties of p-type GeAs are compared with the experimental data in good agreement, and the theoretical figure-of-merit ZT has been predicted as well. 展开更多
关键词 As predicted High Thermoelectric performance of Quasi-Two-Dimensional Compound GeAs Using First-Principles Calculations SEEBECK
下载PDF
Data-Driven Probabilistic S for Batsman Performance Prediction in a Cricket Match
6
作者 Fawad Nasim Muhammad Adnan Yousaf +2 位作者 Sohail Masood Arfan Jaffar Muhammad Rashid 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2865-2877,共13页
Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success.A good batsman not only scores run but also provides stability to the team’s innings.The most important factor ... Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success.A good batsman not only scores run but also provides stability to the team’s innings.The most important factor in selecting a batsman is their ability to score runs.It is a generally accepted notion that the future performance of a batsman can be predicted by observing and analyzing their past record.This hypothesis is based on the fact that a player’s batting aver-age is generally considered to be a good indicator of their future performance.We proposed a data-driven probabilistic system for batsman performance prediction in the game of cricket.It captures the dependencies between the runs scored by a batsman in consecutive balls.The system is evaluated using a dataset extracted from the Cricinfo website.The system is based on a Hidden Markov model(HMM).HMM is used to generate the prediction model to foresee players’upcoming performances.The first-order Markov chain assumes that the probabil-ity of a batsman scoring runs in the next ball is only dependent on how many runs he scored in the current ball.We use a data-driven approach to learn the para-meters of the HMM from data.A probabilistic matrix is made that predicts what scores the batter can do on the upcoming balls.The results show that the system can accurately predict the runs scored by a batsman in a ball. 展开更多
关键词 Probabilistic matrix hidden markov model batsman performance prediction
下载PDF
Exploring device physics of perovskite solar cell via machine learning with limited samples
7
作者 Shanshan Zhao Jie Wang +8 位作者 Zhongli Guo Hongqiang Luo Lihua Lu Yuanyuan Tian Zhuoying Jiang Jing Zhang Mengyu Chen Lin Li Cheng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期441-448,共8页
Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and cou... Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and coupling of these structural and compositional parameters.In this research,we demon-strate an effective approach to optimize PSCs performance via machine learning(ML).To address chal-lenges posed by limited samples,we propose a feature mask(FM)method,which augments training samples through feature transformation rather than synthetic data.Using this approach,squeeze-and-excitation residual network(SEResNet)model achieves an accuracy with a root-mean-square-error(RMSE)of 0.833%and a Pearson's correlation coefficient(r)of 0.980.Furthermore,we employ the permu-tation importance(PI)algorithm to investigate key features for PCE.Subsequently,we predict PCE through high-throughput screenings,in which we study the relationship between PCE and chemical com-positions.After that,we conduct experiments to validate the consistency between predicted results by ML and experimental results.In this work,ML demonstrates the capability to predict device performance,extract key parameters from complex systems,and accelerate the transition from laboratory findings to commercialapplications. 展开更多
关键词 Perovskite solar cell Machine learning Device physics performance prediction Limited samples
下载PDF
Machine learning design of 400 MPa grade biodegradable Zn-Mn based alloys with appropriate corrosion rates
8
作者 Wangzhang Chen Wei Gou +6 位作者 Yageng Li Xiangmin Li Meng Li Jianxin Hou Xiaotong Zhang Zhangzhi Shi Luning Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2727-2736,共10页
The commonly used trial-and-error method of biodegradable Zn alloys is costly and blindness.In this study,based on the self-built database of biodegradable Zn alloys,two machine learning models are established by the ... The commonly used trial-and-error method of biodegradable Zn alloys is costly and blindness.In this study,based on the self-built database of biodegradable Zn alloys,two machine learning models are established by the first time to predict the ultimate tensile strength(UTS)and immersion corrosion rate(CR)of biodegradable Zn alloys.A real-time visualization interface has been established to design Zn-Mn based alloys;a representative alloy is Zn-0.4Mn-0.4Li-0.05Mg.Through tensile mechanical properties and immersion corrosion rate tests,its UTS reaches 420 MPa,and the prediction error is only 0.95%.CR is 73μm/a and the prediction error is 5.5%,which elevates 50 MPa grade of UTS and owns appropriate corrosion rate.Finally,influences of the selected features on UTS and CR are discussed in detail.The combined application of UTS and CR model provides a new strategy for synergistically regulating comprehens-ive properties of biodegradable Zn alloys. 展开更多
关键词 Zn alloys machine learning alloy design performance prediction
下载PDF
Control Strategies for Digital Twin Systems
9
作者 Guo-Ping Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期170-180,共11页
With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies ... With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples. 展开更多
关键词 Digital twin control systems fault tolerant control model tracking performance prediction performance retention
下载PDF
Application of deep learning for informatics aided design of electrode materials in metal-ion batteries
10
作者 Bin Ma Lisheng Zhang +5 位作者 Wentao Wang Hanqing Yu Xianbin Yang Siyan Chen Huizhi Wang Xinhua Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期877-889,共13页
To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In thi... To develop emerging electrode materials and improve the performances of batteries,the machine learning techniques can provide insights to discover,design and develop battery new materials in high-throughput way.In this paper,two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage,specific capacity and specific energy.The deep learning models are trained with the multilayer perceptron as the core.The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models.Based on 10 types of ion batteries,the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V,respectively.The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms.Besides,the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries.This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design. 展开更多
关键词 Cathode materials Material design Electrochemical performance prediction Deep learning Metal-ion batteries
下载PDF
Prediction of Lubricant Physicochemical Properties Based on Gaussian Copula Data Expansion
11
作者 Feng Xin Yang Rui +1 位作者 Xie Peiyuan Xia Yanqiu 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期161-174,共14页
The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO... The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability. 展开更多
关键词 base oil data augmentation machine learning performance prediction seagull algorithm
下载PDF
Predicting full-thickness necrosis in adult acute corrosive ingestion injuries in a sub-Saharan African setting
12
作者 Matthias Frank Scriba Eduard Jonas Galya Eileen Chinnery 《World Journal of Gastrointestinal Pharmacology and Therapeutics》 2024年第6期39-50,共12页
BACKGROUND Corrosive ingestion remains an important global pathology with high morbidity and mortality.Data on the acute management of adult corrosive injuries from sub-Saharan Africa is scarce,with international inve... BACKGROUND Corrosive ingestion remains an important global pathology with high morbidity and mortality.Data on the acute management of adult corrosive injuries from sub-Saharan Africa is scarce,with international investigative algorithms,relying heavily on computed tomography(CT),having limited availability in this setting.AIM To investigate the corrosive injury spectrum in a low-resource setting and the applicability of parameters for predicting full-thickness(FT)necrosis and mortality.METHODS A retrospective analysis of a prospective corrosive injury registry(March 1,2017–October 31,2023)was performed to include all adult patients with acute corrosive ingestion managed at a single,academic referral centre in Cape Town,South Africa.Patient demographics,corrosive ingestion details,initial investigations,management,and short-term outcomes were described using descriptive statistics while multivariate analysis with receiver operator characteristic area under the curve graphs(ROC AUC)were used to identify factors predictive of FT necrosis and 30-day mortality.RESULTS One-hundred patients were included,with a mean age of 32 years(SD:11.2 years)and a male predominance(65.0%).The majority(73.0%)were intentional suicide attempts.Endoscopy on admission was the most frequent initial investigation performed(95 patients),while only 17 were assessed with CT.Seventeen patients had full thickness necrosis at surgery,of which eleven underwent emergency resection and six were palliated.Thirty-day morbidity and mortality were 27.0%and 14.0%,respectively.Patients with full thickness necrosis and those with an established perforation had a 30-day mortality of 58.8%and 91.0%,respectively.Full thickness necrosis was associated with a cumulative 2-year survival of only 17.6%.Multivariate analyses with ROC AUC showed admission endoscopy findings,CT findings,and blood gas findings(pH,base excess,lactate),to all have significant predictive value for full thickness necrosis,with endoscopy proving to have the best predictive value(AUC 0.850).CT and endoscopy findings were the only factors predictive of early mortality,with CT performing better than endoscopy(AUC 0.798 vs 0.759).CONCLUSION Intentional corrosive injuries result in devastating morbidity and mortality.Locally,early endoscopy remains the mainstay of severity assessment,but referral for CT imaging should be considered especially when blood gas findings are abnormal. 展开更多
关键词 Corrosive injuries Caustic injuries ADULT Predicting necrosis Endoscopy predictive performance CT predictive performance Short-term survival
下载PDF
Numerical Research on Performance Prediction for Centrifugal Pumps 被引量:15
13
作者 TAN Minggao YUAN Shouqi LIU Houlin WANG Yong WANG Kai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期21-26,共6页
Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improveme... Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improvement of numerical calculation method and performance prediction for centrifugal pumps, performance of six centrifugal pump models at design flow rate and off design flow rates, whose specific speed are different, were simulated by using commercial code FLUENT. The standard k-t turbulence model and SIMPLEC algorithm were chosen in FLUENT. The simulation was steady and moving reference frame was used to consider the impeller-volute interaction. Also, how to dispose the gap between impeller and volute was presented and the effect of grid number was considered. The characteristic prediction model for centrifugal pumps is established according to the simulation results. The head and efficiency of the six models at different flow rates are predicted and the prediction results are compared with the experiment results in detail. The comparison indicates that the precision of head and efficiency prediction are all less than 5%. The flow analysis indicates that flow change has an important effect on the location and area of low pressure region behind the blade inlet and the direction of velocity at impeller inlet. The study shows that using FLUENT simulation results to predict performance of centrifugal pumps is feasible and accurate. The method can be applied in engineering practice. 展开更多
关键词 centrifugal pump performance prediction numerical research
下载PDF
Predictive performance of'Diprifusor'TCI system in patients during upper abdominal surgery under propofol/fentanyl anesthesia 被引量:7
14
作者 李玉红 徐建红 +2 位作者 杨建军 田婕 徐建国 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2005年第1期43-48,共6页
Objective:To evaluate the predictive performance of‘Diprifusor’TCI(target-controlled infusion)system for its betterapplication in clinical anesthesia.Methods:The predictive performance of a‘Diprifusor’TCI system w... Objective:To evaluate the predictive performance of‘Diprifusor’TCI(target-controlled infusion)system for its betterapplication in clinical anesthesia.Methods:The predictive performance of a‘Diprifusor’TCI system was investigated in 27Chinese patients(16 males and 11 females)during upper abdominal surgery under total intravenous anesthesia(TIVA)withpropofol/fentanyl.Measnred arterial propofol concentrations were compared with the values predicted by the TCI infusion system.Performance was determined by the median performance error(MDPE),the median absolute performance error(MDAPE),thedivergence(the percentage change of the absolute PE with time),and the wobble(the median absolute deviation of each PE fromthe MDPE).Results:The median(range)values of 14.9%(-21.6%~42.9%)for MDPE,23.3%(6.9%~62.5%)for MDAPE,-1.9%h^(-1)(-32.7%~23.0% h^(-1))for divergence,and 18.9%(4.2%~59.6%)for wobble were obtained from 227 samples from all patients.For the studied population,the PE did not increase with time but with increasing target propofol concentration,particularly fol-lowing induction.Conclusions:The control of depth of anaesthesia was good in all patients undergoing upper abdominal surgicaloperation and the predictive performance of the‘Diprifusor’target controlled mthsion system was considered acceptable forclinical purposes.But the relatively bigger wobble showed that the pharmacokinetic model is not so suitable and requires im-provement. 展开更多
关键词 Target-controlled infusion(TCI) ‘Diprifusor’TC1 system Predictive performance assessment Wobble INFUSION
下载PDF
Prediction of roadheaders' performance using artificial neural network approaches (MLP and KOSFM) 被引量:11
15
作者 Arash Ebrahimabadi Mohammad Azimipour Ali Bahreini 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期573-583,共11页
A pplication o f m echanical excavators is one o f th e m o st com m only used excavation m eth o d s because itcan bring th e p ro ject m ore productivity, accuracy and safety. A m ong th e m echanical excavators, ro... A pplication o f m echanical excavators is one o f th e m o st com m only used excavation m eth o d s because itcan bring th e p ro ject m ore productivity, accuracy and safety. A m ong th e m echanical excavators, roadhead ers are m echanical m iners w h ich have b een extensively u se d in tu n n elin g , m ining an d civil indu stries. Perform ance pred ictio n is an im p o rta n t issue for successful ro a d h e a d e r application andgenerally deals w ith m achine selection, p ro d u ctio n rate an d b it consu m p tio n . The m ain aim o f thisresearch is to investigate th e c u ttin g p erfo rm an ce (in stan tan eo u s c u ttin g rates (ICRs)) o f m ed iu m -d u tyro ad h ead ers by using artificial neural n etw o rk (ANN) approach. T here are d ifferent categories forANNs, b u t based o n train in g alg o rith m th e re are tw o m ain k in d s: supervised and u n su p erv ised . Them u lti-lay er p ercep tro n (MLP) an d K ohonen self-organizing feature m ap (KSOFM) are th e m o st w idelyused neu ral netw o rk s for supervised an d u n su p erv ised ones, respectively. For gaining this goal, ad atab ase w as prim arily provided from ro ad h e a d e rs' p erfo rm an ce an d geom echanical characteristics o frock form ations in tu n n els and d rift galleries in Tabas coal m ine, th e larg est an d th e only fullymech an ized coal m ine in Iran. T hen th e datab ase w as analyzed in o rd e r to yield th e m ost im p o rtan tfactor for ICR by using relatively im p o rta n t factor in w hich G arson eq u atio n w as utilized. The MLPn etw o rk w as train ed by 3 in p u t p ara m e te rs including rock m ass pro p erties, rock quality d esignation(RQD), in tact rock p ro p erties such as uniaxial com pressive stre n g th (UCS) an d Brazilian ten sile stren g th(BTS), and o n e o u tp u t p a ra m e te r (ICR). In o rd e r to have m ore v alidation o n MLP o u tp u ts, KSOFM visualizationw as applied. The m ean square e rro r (MSE) an d regression coefficient (R ) o f MLP w e re found tobe 5.49 an d 0.97, respectively. M oreover, KSOFM n etw o rk has a m ap size o f 8 x 5 and final qu an tizatio nan d topographic erro rs w e re 0.383 an d 0.032, respectively. The results show th a t MLP neural n etw orkshave a strong capability to p red ict an d ev alu ate th e perfo rm an ce o f m ed iu m -d u ty ro ad h ead ers in coalm easu re rocks. Furtherm ore, it is concluded th a t KSOFM neural n etw o rk is an efficient w ay for u n d e rstand in g system beh av io r an d know ledge extraction. Finally, it is indicated th a t UCS has m ore influenceo n ICR b y applying th e b e st train ed MLP n etw o rk w eig h ts in G arson eq u atio n w h ich is also confirm ed byKSOFM. 展开更多
关键词 Artificial neural network(ANN) performance prediction ROADHEADER Instantaneous cutting rate(ICR) Tabas coal mine project
下载PDF
Improving MapReduce Performance by Balancing Skewed Loads 被引量:4
16
作者 FAN Yuanquan WU Weiguo XU Yunlong CHEN Heng 《China Communications》 SCIE CSCD 2014年第8期85-108,共24页
MapReduce has emerged as a popular computing model used in datacenters to process large amount of datasets.In the map phase,hash partitioning is employed to distribute data that sharing the same key across data center... MapReduce has emerged as a popular computing model used in datacenters to process large amount of datasets.In the map phase,hash partitioning is employed to distribute data that sharing the same key across data center-scale cluster nodes.However,we observe that this approach can lead to uneven data distribution,which can result in skewed loads among reduce tasks,thus hamper performance of MapReduce systems.Moreover,worker nodes in MapReduce systems may differ in computing capability due to(1) multiple generations of hardware in non-virtualized data centers,or(2) co-location of virtual machines in virtualized data centers.The heterogeneity among cluster nodes exacerbates the negative effects of uneven data distribution.To improve MapReduce performance in heterogeneous clusters,we propose a novel load balancing approach in the reduce phase.This approach consists of two components:(1) performance prediction for reducers that run on heterogeneous nodes based on support vector machines models,and(2) heterogeneity-aware partitioning(HAP),which balances skewed data for reduce tasks.We implement this approach as a plug-in in current MapReduce system.Experimental results demonstrate that our proposed approach distributes work evenly among reduce tasks,and improves MapReduce performance with little overhead. 展开更多
关键词 MAPREDUCE cloud computing skewed loads performance prediction supportvector machines
下载PDF
THREE-DIMENSIONAL COUPLED IMPELLER-VOLUTE SIMULATION OF FLOW IN CENTRIFUGAL PUMP AND PERFORMANCE PREDICTION 被引量:28
17
作者 ZHAO Binjuan YUAN Shouqi +1 位作者 LlU Houlin TAN Minggao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期59-62,共4页
A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure f... A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields arc totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral. 展开更多
关键词 Centrifugal pump Numerical simulation performance prediction Secondary flow
下载PDF
Evaluation of boring machine performance with special reference to geomechanical characteristics 被引量:1
18
作者 K. Goshtasbi M. Monjezi P. Tourgoli 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第6期615-619,共5页
The duration of tunneling projects mostly depends on the performance of boring machines. The performance of boring machines is a function of advance rate, which depends on the machine characterizations and geomechanic... The duration of tunneling projects mostly depends on the performance of boring machines. The performance of boring machines is a function of advance rate, which depends on the machine characterizations and geomechanical properties of rock mass. There were various theoretical and empirical models for estimating the advance rate. In this paper, after determining the geomechanical properties of rock mass encountered in the Isfahan metro tunnel, the performance of the roadheader and tunnel boring machine (TBM) were then evaluated using various models. The calculation results show that the average instantaneous cutting rate of the roadheader in sandstone and shale are 42.8 and 74.5 m^3/h respectively. However the actual values in practice are 34.2 and 51.3 m^3/h. The operational cutting rate of the roadheader in sandstone and shale are 8.2 and 9.7 m^3/h respectively, but the actual values are 6.5 and 6.7 m^3/h. The penetration rate of the TBM in shale is predicted to be 50-60 mm/round. 展开更多
关键词 performance prediction ROADHEADER cutting rate specific energy tunnel boring machine penetration rate
下载PDF
Predicting configuration performance of modular product family using principal component analysis and support vector machine 被引量:1
19
作者 张萌 李国喜 +1 位作者 龚京忠 吴宝中 《Journal of Central South University》 SCIE EI CAS 2014年第7期2701-2711,共11页
A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a n... A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators. 展开更多
关键词 design configuration performance prediction MODULARITY principal component analysis support vector machine
下载PDF
Performance prediction of gravity concentrator by using artificial neural network-a case study 被引量:3
20
作者 Panda Lopamudra Tripathy Sunil Kumar 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期461-465,共5页
In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation ... In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values. 展开更多
关键词 Chromite Artificial neural network Wet shaking table performance prediction Back propagation algorithm
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部