This paper is a research on the characteristics of power big data. According to the characteristics of "large volume", "species diversity", "sparse value density", "fast speed" of the power big data, a predict...This paper is a research on the characteristics of power big data. According to the characteristics of "large volume", "species diversity", "sparse value density", "fast speed" of the power big data, a prediction model of multi-source information fusion for large data is established, the fusion prediction of various parameters of the same object is realized. A combined algorithm of Map Reduce and neural network is used in this paper. Using clustering and nonlinear mapping ability of neural network, it can effectively solve the problem of nonlinear objective function approximation, and neural network is applied to the prediction of fusion. In this paper, neural network model using multi layer feed forward network--BP neural network. Simultaneously, to achieve large-scale data sets in parallel computing, the parallelism and real-time property of the algorithm should be considered, further combined with Reduce Map model, to realize the parallel processing of the algorithm, making it more suitable for the study of the fusion of large data. And finally, through simulation, it verifies the feasibility of the proposed model and algorithm.展开更多
1 Introduction The Paleogene strata(with a depth of more than 2500m)in the Bohai sea is complex(Xu Changgui,2006),the reservoir buried deeply,the reservoir prediction is difficult(LAI Weicheng,XU Changgui,2012),and more
The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use ...The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation.展开更多
In this paper,a predictive sliding mode control method based on multi-sensor fusion is proposed to solve the problem of insufficient accuracy in trajectory tracking caused by actuator delay.The controller,based on the...In this paper,a predictive sliding mode control method based on multi-sensor fusion is proposed to solve the problem of insufficient accuracy in trajectory tracking caused by actuator delay.The controller,based on the kinematics model,uses an inner and outer two-layer structure to achieve decoupling of position control and heading control.A reference positional change rate is introduced into the design of controller,making the automatic guided vehicle(AGV)capable of real-time predictive control ability.A stability analysis and a proof of predictive sliding mode control theory are provided.The experimental results show that the new control algorithm can improve the performance of the AGV controller by referring to the positional change rate,thereby improving the AGV operation without derailing.展开更多
文摘This paper is a research on the characteristics of power big data. According to the characteristics of "large volume", "species diversity", "sparse value density", "fast speed" of the power big data, a prediction model of multi-source information fusion for large data is established, the fusion prediction of various parameters of the same object is realized. A combined algorithm of Map Reduce and neural network is used in this paper. Using clustering and nonlinear mapping ability of neural network, it can effectively solve the problem of nonlinear objective function approximation, and neural network is applied to the prediction of fusion. In this paper, neural network model using multi layer feed forward network--BP neural network. Simultaneously, to achieve large-scale data sets in parallel computing, the parallelism and real-time property of the algorithm should be considered, further combined with Reduce Map model, to realize the parallel processing of the algorithm, making it more suitable for the study of the fusion of large data. And finally, through simulation, it verifies the feasibility of the proposed model and algorithm.
基金funded by Major Projects of National Science and Technology “Large Oil and Gas Fields and CBM development”(Grant No. 2016ZX05 027)
文摘1 Introduction The Paleogene strata(with a depth of more than 2500m)in the Bohai sea is complex(Xu Changgui,2006),the reservoir buried deeply,the reservoir prediction is difficult(LAI Weicheng,XU Changgui,2012),and more
基金This work was partly supported by the Basic Ability Improvement Project for Young andMiddle-aged Teachers in Guangxi Colleges andUniversities(2021KY1800,2021KY1804).
文摘The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61903241,61304223,61603191,61873158,61573237)the China Postdoctoral Science Foundation(Grant No.2018M630424)the Natural Science Foundation of Shanghai Municipality(Grant No.18ZR1415100).
文摘In this paper,a predictive sliding mode control method based on multi-sensor fusion is proposed to solve the problem of insufficient accuracy in trajectory tracking caused by actuator delay.The controller,based on the kinematics model,uses an inner and outer two-layer structure to achieve decoupling of position control and heading control.A reference positional change rate is introduced into the design of controller,making the automatic guided vehicle(AGV)capable of real-time predictive control ability.A stability analysis and a proof of predictive sliding mode control theory are provided.The experimental results show that the new control algorithm can improve the performance of the AGV controller by referring to the positional change rate,thereby improving the AGV operation without derailing.