Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
Uncertainties existing in the process of dam deformation negatively influence deformation prediction. However, existing deformation pre- diction models seldom consider uncertainties. In this study, a cloud-Verhulst hy...Uncertainties existing in the process of dam deformation negatively influence deformation prediction. However, existing deformation pre- diction models seldom consider uncertainties. In this study, a cloud-Verhulst hybrid prediction model was established by combing a cloud model with the Verhulst model. The expectation, one of the cloud characteristic parameters, was obtained using the Verhulst model, and the other two cloud characteristic parameters, entropy and hyper-entropy, were calculated by introducing inertia weight. The hybrid prediction model was used to predict the dam deformation in a hydroelectric project. Comparison of the prediction results of the hybrid prediction model with those of a traditional statistical model and the monitoring values shows that the proposed model has higher prediction accuracy than the traditional sta- tistical model. It provides a new approach to predicting dam deformation under uncertain conditions.展开更多
The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determine...The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determined with Lahitte criterion;then,the stepwise regression and partial least squares regression models for deformation prediction of concrete gravity dam are constructed in terms of the reliable monitoring data,and the factors of water pressure,temperature and time effect are considered in the models;finally,according to the monitoring data from 2006 to 2020 of five typical measuring points including J23(on dam section 24^(#)),J33(on dam section 4^(#)),J35(on dam section 8^(#)),J37(on dam section 12^(#)),and J39(on dam section 15^(#))located on the crest of Wuqiangxi concrete gravity dam,the settlement curves of the measuring points are obtained with the stepwise regression and partial least squares regression models.A deep learning model is developed based on long short-term memory(LSTM)recurrent neural network.In the LSTM model,two LSTMlayers are used,the rectified linear unit function is adopted as the activation function,the input sequence length is 20,and the random search is adopted.The monitoring data for the five typical measuring points from 2006 to 2017 are selected as the training set,and the monitoring data from 2018 to 2020 are taken as the test set.From the results of case study,we can find that(1)the good fitting results can be obtained with the two statistical models;(2)the partial least squares regression algorithm can solve the model with high correlation factors and reasonably explain the factors;(3)the prediction accuracy of the LSTM model increases with increasing the amount of training data.In the deformation prediction of concrete gravity dam,the LSTM model is suggested when there are sufficient training data,while the partial least squares regression method is suggested when the training data are insufficient.展开更多
The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to ov...The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to overload testing with a geological model and the measured time series of installed perpendicular lines, the space and time evolution characteristics of the arch dam structure were analyzed, and its mechanical performance was evaluated. Subsequently, the deformation centroid of the deflective curve was suggested to indicate the magnitude and unique distribution rules for a typical dam section using the measured deformation values at multi-monitoring points. The ellipse equations of the critical ellipsoid for the centroid were derived from the historical measured time series. Hydrostatic and seasonal components were extracted from the measured deformation values with a traditional statistical model, and residuals were adopted as a grey component. A time-varying grey model was developed to accurately predict the evolution of the deformation behavior of the ultrahigh arch dam during future operation. In the developed model, constant coefficients were modified so as to be time-dependent functions, and the prediction accuracy was significantly improved through introduction of a forgetting factor. Finally, the critical threshold was estimated, and predicted ellipsoids were derived for the Xiaowan arch dam. The findings of this study can provide technical support for safety evaluation of the actual operation of ultrahigh arch dams and help to provide early warning of abnormal changes.展开更多
Arch dam deformation is comprehensively affected by water pressure,temperature,dam's structural behavior and material properties as well as other factors.Among them the water pressure and temperature are external ...Arch dam deformation is comprehensively affected by water pressure,temperature,dam's structural behavior and material properties as well as other factors.Among them the water pressure and temperature are external factors(source factors) that cause dam deformation,and dam's structural behavior and material properties are the internal factors of deformation(resistance factors).The dam deformation is the result of the mutual game playing between source factors and resistance factors.Therefore,resistance factors of structure and materials that reflect resistance character of arch dam structure are introduced into the traditional model,where structure factor is embodied by the flexibility coefficient of dam body and the maximum dam height,and material property is embodied by the elastic modulus of dam.On the basis of analyzing the correlation between dam deformation and resistance factors,the game model of safety monitoring for arch dam deformation is put forward.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
基金supported by the National Natural Science Foundation of China(Grant No.51379162)the Water Conservancy Science and Technology Innovation Project of Guangdong Province(Grant No.2016-06)
文摘Uncertainties existing in the process of dam deformation negatively influence deformation prediction. However, existing deformation pre- diction models seldom consider uncertainties. In this study, a cloud-Verhulst hybrid prediction model was established by combing a cloud model with the Verhulst model. The expectation, one of the cloud characteristic parameters, was obtained using the Verhulst model, and the other two cloud characteristic parameters, entropy and hyper-entropy, were calculated by introducing inertia weight. The hybrid prediction model was used to predict the dam deformation in a hydroelectric project. Comparison of the prediction results of the hybrid prediction model with those of a traditional statistical model and the monitoring values shows that the proposed model has higher prediction accuracy than the traditional sta- tistical model. It provides a new approach to predicting dam deformation under uncertain conditions.
文摘The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determined with Lahitte criterion;then,the stepwise regression and partial least squares regression models for deformation prediction of concrete gravity dam are constructed in terms of the reliable monitoring data,and the factors of water pressure,temperature and time effect are considered in the models;finally,according to the monitoring data from 2006 to 2020 of five typical measuring points including J23(on dam section 24^(#)),J33(on dam section 4^(#)),J35(on dam section 8^(#)),J37(on dam section 12^(#)),and J39(on dam section 15^(#))located on the crest of Wuqiangxi concrete gravity dam,the settlement curves of the measuring points are obtained with the stepwise regression and partial least squares regression models.A deep learning model is developed based on long short-term memory(LSTM)recurrent neural network.In the LSTM model,two LSTMlayers are used,the rectified linear unit function is adopted as the activation function,the input sequence length is 20,and the random search is adopted.The monitoring data for the five typical measuring points from 2006 to 2017 are selected as the training set,and the monitoring data from 2018 to 2020 are taken as the test set.From the results of case study,we can find that(1)the good fitting results can be obtained with the two statistical models;(2)the partial least squares regression algorithm can solve the model with high correlation factors and reasonably explain the factors;(3)the prediction accuracy of the LSTM model increases with increasing the amount of training data.In the deformation prediction of concrete gravity dam,the LSTM model is suggested when there are sufficient training data,while the partial least squares regression method is suggested when the training data are insufficient.
基金supported by the National Natural Science Foundation of China(Grant No.52079046)the Fundamental Research Funds for the Central Universities(Grant No.B210202017).
文摘The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to overload testing with a geological model and the measured time series of installed perpendicular lines, the space and time evolution characteristics of the arch dam structure were analyzed, and its mechanical performance was evaluated. Subsequently, the deformation centroid of the deflective curve was suggested to indicate the magnitude and unique distribution rules for a typical dam section using the measured deformation values at multi-monitoring points. The ellipse equations of the critical ellipsoid for the centroid were derived from the historical measured time series. Hydrostatic and seasonal components were extracted from the measured deformation values with a traditional statistical model, and residuals were adopted as a grey component. A time-varying grey model was developed to accurately predict the evolution of the deformation behavior of the ultrahigh arch dam during future operation. In the developed model, constant coefficients were modified so as to be time-dependent functions, and the prediction accuracy was significantly improved through introduction of a forgetting factor. Finally, the critical threshold was estimated, and predicted ellipsoids were derived for the Xiaowan arch dam. The findings of this study can provide technical support for safety evaluation of the actual operation of ultrahigh arch dams and help to provide early warning of abnormal changes.
基金Supported by the National Natural Science Foundation of China (Grant Nos.50809025,50539110,50539010,50539030)the National Science and Technology Supporting Plan (Grant Nos.20006BAC14B03,2008BAB29B06,2008BAB29B03)
文摘Arch dam deformation is comprehensively affected by water pressure,temperature,dam's structural behavior and material properties as well as other factors.Among them the water pressure and temperature are external factors(source factors) that cause dam deformation,and dam's structural behavior and material properties are the internal factors of deformation(resistance factors).The dam deformation is the result of the mutual game playing between source factors and resistance factors.Therefore,resistance factors of structure and materials that reflect resistance character of arch dam structure are introduced into the traditional model,where structure factor is embodied by the flexibility coefficient of dam body and the maximum dam height,and material property is embodied by the elastic modulus of dam.On the basis of analyzing the correlation between dam deformation and resistance factors,the game model of safety monitoring for arch dam deformation is put forward.