Uncertainties existing in the process of dam deformation negatively influence deformation prediction. However, existing deformation pre- diction models seldom consider uncertainties. In this study, a cloud-Verhulst hy...Uncertainties existing in the process of dam deformation negatively influence deformation prediction. However, existing deformation pre- diction models seldom consider uncertainties. In this study, a cloud-Verhulst hybrid prediction model was established by combing a cloud model with the Verhulst model. The expectation, one of the cloud characteristic parameters, was obtained using the Verhulst model, and the other two cloud characteristic parameters, entropy and hyper-entropy, were calculated by introducing inertia weight. The hybrid prediction model was used to predict the dam deformation in a hydroelectric project. Comparison of the prediction results of the hybrid prediction model with those of a traditional statistical model and the monitoring values shows that the proposed model has higher prediction accuracy than the traditional sta- tistical model. It provides a new approach to predicting dam deformation under uncertain conditions.展开更多
This study aims to reveal the macroscopic permanent deformation(PD)behavior and the internal structural evolution of construction and demolition waste(CDW)under loading.Firstly,the initial matric suction of CDW was me...This study aims to reveal the macroscopic permanent deformation(PD)behavior and the internal structural evolution of construction and demolition waste(CDW)under loading.Firstly,the initial matric suction of CDW was measured by the filter paper method.Secondly,the PD of CDW with different humidity and stress states was investigated by repeated load triaxial tests,and a comprehensive prediction model was established.Finally,the discrete element method was performed to analyze the internal structural evolution of CDW during deformation.These results showed that the VAN-GENUCHTEN model could describe the soil-water characteristic curve of CDW well.The PD increases with the increase of the deviator stress and the number of cyclic loading,but the opposite trend was observed when the initial matric suction and confining pressure increased.The proposed model in this study provides a satisfactory prediction of PD.The discrete element method could accurately simulate the macroscopic PD of CDW,and the shear force,interlock force and sliding content increase with the increase of deviator stress during the deformation.The research could provide useful reference for the deformation stability analysis of CDW under cyclic loading.展开更多
The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determine...The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determined with Lahitte criterion;then,the stepwise regression and partial least squares regression models for deformation prediction of concrete gravity dam are constructed in terms of the reliable monitoring data,and the factors of water pressure,temperature and time effect are considered in the models;finally,according to the monitoring data from 2006 to 2020 of five typical measuring points including J23(on dam section 24^(#)),J33(on dam section 4^(#)),J35(on dam section 8^(#)),J37(on dam section 12^(#)),and J39(on dam section 15^(#))located on the crest of Wuqiangxi concrete gravity dam,the settlement curves of the measuring points are obtained with the stepwise regression and partial least squares regression models.A deep learning model is developed based on long short-term memory(LSTM)recurrent neural network.In the LSTM model,two LSTMlayers are used,the rectified linear unit function is adopted as the activation function,the input sequence length is 20,and the random search is adopted.The monitoring data for the five typical measuring points from 2006 to 2017 are selected as the training set,and the monitoring data from 2018 to 2020 are taken as the test set.From the results of case study,we can find that(1)the good fitting results can be obtained with the two statistical models;(2)the partial least squares regression algorithm can solve the model with high correlation factors and reasonably explain the factors;(3)the prediction accuracy of the LSTM model increases with increasing the amount of training data.In the deformation prediction of concrete gravity dam,the LSTM model is suggested when there are sufficient training data,while the partial least squares regression method is suggested when the training data are insufficient.展开更多
Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,...Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method.展开更多
Traditionally, when creating 4-D models of elastic offsets in the Earth’s crust, the data from geodesic and GPS monitoring of offsets on the ground surface, earthquake catalogs, monitoring of the water level and rado...Traditionally, when creating 4-D models of elastic offsets in the Earth’s crust, the data from geodesic and GPS monitoring of offsets on the ground surface, earthquake catalogs, monitoring of the water level and radon content in wells, sea level fluctuations, as well as gravitational and magnetic fields, etc., can be taken as bases for information. In essence, the reason for creating a 4-D model of slow elastic deformations is to approximate the process by a set of plane deformation solitons (solitary waves). The parameters of a set of deformation solitons are obtained by a two-stage inversion. First, the parameters of the model are determined in a kinematic way by the use of a modified simplification of the method. Then, a calibration of the amplitude characteristics of the model is carried out in terms of elastic dynamic offsets. Taking Ural, Northern Tianshan, Greece, and China as examples, models for these regions are created on the basis of seismological, geodesic, deformation, hydrogeological,展开更多
In order to clarify the influence of grain size on cyclic deformation response of superalloy sheets and springback behavior,cyclic loading-unloading and shearing tests were performed on the superalloy foils with 0.2 m...In order to clarify the influence of grain size on cyclic deformation response of superalloy sheets and springback behavior,cyclic loading-unloading and shearing tests were performed on the superalloy foils with 0.2 mm in thickness and diverse grain sizes.The results show that,the decline ratio of elastic modulus is weakened with increasing grain size,and the Bauschinger effect becomes evident with decreasing grain size.Meanwhile,U-bending test results determine that the springback is diminished with increasing grain size.The Chaboche,Anisotropic Nonlinear Kinematic(ANK)and Yoshida-Uemori(Y-U)models were utilized to fit the shear stress-strain curves of specimens.It is found that Y-U model is sufficient of predicting the springback.However,the prediction accuracy is degraded with increasing grain size.展开更多
The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan P...The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability.展开更多
The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the d...The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.展开更多
Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was ad...Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was adopted to explore the bulking coefficient time effect of the broken rock in the caving zone under three-dimensional triaxial compression condition.The phenomena of stress corrosion,deformation,and failure of rock blocks were simulated in the numerical model.Meanwhile,a new criterion of rock fragments damage was put forward.It was found that the broken rock has obvious viscoelastic properties.A new equation based on the Burgers creep model was proposed to predict the bulking coefficient of broken rock.A deformation characteristic parameter of the prediction equation was analyzed,which can be set as a fixed value in the mid-and long-term prediction of the bulking coefficient.There are quadratic function relationships between the deformation characteristic parameter value and Talbot gradation index,axial pressure and confining pressure.展开更多
This paper describes a building subsidence deformation prediction model with the self-memorization principle.According to the non-linear specificity and monotonic growth characteristics of the time series of building ...This paper describes a building subsidence deformation prediction model with the self-memorization principle.According to the non-linear specificity and monotonic growth characteristics of the time series of building subsidence deformation,a data-based mechanistic self-memory model considering randomness and dynamic features of building subsidence deformation is established based on the dynamic data retrieved method and the self-memorization equation.This model first deduces the differential equation of the building subsidence deformation system using the dynamic retrieved method,which treats the monitored time series data as particular solutions of the nonlinear dynamic system.Then,the differential equation is evolved into a difference-integral equation by the self-memory function to establish the self-memory model of dynamic system for predicting nonlinear building subsidence deformation.As the memory coefficients of the proposed model are calculated with historical data,which contain useful information for the prediction and overcome the shortcomings of the average prediction,the model can predict extreme values of a system and provide higher fitting precision and prediction accuracy than deterministic or random statistical prediction methods.The model was applied to subsidence deformation prediction of a building in Xi'an.It was shown that the model is valid and feasible in predicting building subsidence deformation with good accuracy.展开更多
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener...This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51379162)the Water Conservancy Science and Technology Innovation Project of Guangdong Province(Grant No.2016-06)
文摘Uncertainties existing in the process of dam deformation negatively influence deformation prediction. However, existing deformation pre- diction models seldom consider uncertainties. In this study, a cloud-Verhulst hybrid prediction model was established by combing a cloud model with the Verhulst model. The expectation, one of the cloud characteristic parameters, was obtained using the Verhulst model, and the other two cloud characteristic parameters, entropy and hyper-entropy, were calculated by introducing inertia weight. The hybrid prediction model was used to predict the dam deformation in a hydroelectric project. Comparison of the prediction results of the hybrid prediction model with those of a traditional statistical model and the monitoring values shows that the proposed model has higher prediction accuracy than the traditional sta- tistical model. It provides a new approach to predicting dam deformation under uncertain conditions.
基金Project(52025085)supported by the National Science Fund for Distinguished Young Scholars,ChinaProjects(51927814,51878078)supported by the National Natural Science Foundation of China+3 种基金Project(2018-025)supported by the Training Program for High-level Technical Personnel in Transportation Industry,ChinaProject(CTKY-PTRC 2018-003)supported by the Design Theory,Method and Demonstration of Durability Asphalt Pavement Based on Heavy-duty Traffic Conditions in Shanghai Area,ChinaProject(2020RC4048)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(SJCX202001)supported by the Construction Project for Graduate Students of Changsha University of Science&Technology,China。
文摘This study aims to reveal the macroscopic permanent deformation(PD)behavior and the internal structural evolution of construction and demolition waste(CDW)under loading.Firstly,the initial matric suction of CDW was measured by the filter paper method.Secondly,the PD of CDW with different humidity and stress states was investigated by repeated load triaxial tests,and a comprehensive prediction model was established.Finally,the discrete element method was performed to analyze the internal structural evolution of CDW during deformation.These results showed that the VAN-GENUCHTEN model could describe the soil-water characteristic curve of CDW well.The PD increases with the increase of the deviator stress and the number of cyclic loading,but the opposite trend was observed when the initial matric suction and confining pressure increased.The proposed model in this study provides a satisfactory prediction of PD.The discrete element method could accurately simulate the macroscopic PD of CDW,and the shear force,interlock force and sliding content increase with the increase of deviator stress during the deformation.The research could provide useful reference for the deformation stability analysis of CDW under cyclic loading.
文摘The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determined with Lahitte criterion;then,the stepwise regression and partial least squares regression models for deformation prediction of concrete gravity dam are constructed in terms of the reliable monitoring data,and the factors of water pressure,temperature and time effect are considered in the models;finally,according to the monitoring data from 2006 to 2020 of five typical measuring points including J23(on dam section 24^(#)),J33(on dam section 4^(#)),J35(on dam section 8^(#)),J37(on dam section 12^(#)),and J39(on dam section 15^(#))located on the crest of Wuqiangxi concrete gravity dam,the settlement curves of the measuring points are obtained with the stepwise regression and partial least squares regression models.A deep learning model is developed based on long short-term memory(LSTM)recurrent neural network.In the LSTM model,two LSTMlayers are used,the rectified linear unit function is adopted as the activation function,the input sequence length is 20,and the random search is adopted.The monitoring data for the five typical measuring points from 2006 to 2017 are selected as the training set,and the monitoring data from 2018 to 2020 are taken as the test set.From the results of case study,we can find that(1)the good fitting results can be obtained with the two statistical models;(2)the partial least squares regression algorithm can solve the model with high correlation factors and reasonably explain the factors;(3)the prediction accuracy of the LSTM model increases with increasing the amount of training data.In the deformation prediction of concrete gravity dam,the LSTM model is suggested when there are sufficient training data,while the partial least squares regression method is suggested when the training data are insufficient.
文摘Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method.
文摘Traditionally, when creating 4-D models of elastic offsets in the Earth’s crust, the data from geodesic and GPS monitoring of offsets on the ground surface, earthquake catalogs, monitoring of the water level and radon content in wells, sea level fluctuations, as well as gravitational and magnetic fields, etc., can be taken as bases for information. In essence, the reason for creating a 4-D model of slow elastic deformations is to approximate the process by a set of plane deformation solitons (solitary waves). The parameters of a set of deformation solitons are obtained by a two-stage inversion. First, the parameters of the model are determined in a kinematic way by the use of a modified simplification of the method. Then, a calibration of the amplitude characteristics of the model is carried out in terms of elastic dynamic offsets. Taking Ural, Northern Tianshan, Greece, and China as examples, models for these regions are created on the basis of seismological, geodesic, deformation, hydrogeological,
基金the National Natural Science Foundation of China(Nos.51975031,52075023,51635005)Defense Industrial Technology Development Program,China(No.JCKY2018601C207)。
文摘In order to clarify the influence of grain size on cyclic deformation response of superalloy sheets and springback behavior,cyclic loading-unloading and shearing tests were performed on the superalloy foils with 0.2 mm in thickness and diverse grain sizes.The results show that,the decline ratio of elastic modulus is weakened with increasing grain size,and the Bauschinger effect becomes evident with decreasing grain size.Meanwhile,U-bending test results determine that the springback is diminished with increasing grain size.The Chaboche,Anisotropic Nonlinear Kinematic(ANK)and Yoshida-Uemori(Y-U)models were utilized to fit the shear stress-strain curves of specimens.It is found that Y-U model is sufficient of predicting the springback.However,the prediction accuracy is degraded with increasing grain size.
基金supported by the second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant NO.2019QZKK0904)the National Natural Science Foundation of China(Grant No.41941019)the National Natural Science Foundation of China(Grant NO.42307217)。
文摘The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability.
基金supported by the Qingdao Natural Science Foundation(No.23-2-1-54-zyyd-jch)the National Natural Science Foundation of China(Nos.42076217,41976074)+1 种基金the Laoshan Laboratory(No.LSKJ202203506)the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University(No.KLE-TJGE-G2202).
文摘The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.
基金This work was supported by the National Natural Science Foundation of China,NSFC(Nos.U1803118 and 51974296)and the China Scholarship Council(CSC)(award to Fanfei Meng for PhD period at Kyushu University).
文摘Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was adopted to explore the bulking coefficient time effect of the broken rock in the caving zone under three-dimensional triaxial compression condition.The phenomena of stress corrosion,deformation,and failure of rock blocks were simulated in the numerical model.Meanwhile,a new criterion of rock fragments damage was put forward.It was found that the broken rock has obvious viscoelastic properties.A new equation based on the Burgers creep model was proposed to predict the bulking coefficient of broken rock.A deformation characteristic parameter of the prediction equation was analyzed,which can be set as a fixed value in the mid-and long-term prediction of the bulking coefficient.There are quadratic function relationships between the deformation characteristic parameter value and Talbot gradation index,axial pressure and confining pressure.
基金supported by the Twelfth Five National Key Technology R&D Program of China (2009BAJ28B04,2011BAK07B01,2011BAJ08B03,2011BAJ08B05)the National Natural Science Foundation of China(51108428)+1 种基金Beijing Postdoctoral Research Foundation (2012ZZ-17)China Postdoctoral Science Foundation (2011M500199)
文摘This paper describes a building subsidence deformation prediction model with the self-memorization principle.According to the non-linear specificity and monotonic growth characteristics of the time series of building subsidence deformation,a data-based mechanistic self-memory model considering randomness and dynamic features of building subsidence deformation is established based on the dynamic data retrieved method and the self-memorization equation.This model first deduces the differential equation of the building subsidence deformation system using the dynamic retrieved method,which treats the monitored time series data as particular solutions of the nonlinear dynamic system.Then,the differential equation is evolved into a difference-integral equation by the self-memory function to establish the self-memory model of dynamic system for predicting nonlinear building subsidence deformation.As the memory coefficients of the proposed model are calculated with historical data,which contain useful information for the prediction and overcome the shortcomings of the average prediction,the model can predict extreme values of a system and provide higher fitting precision and prediction accuracy than deterministic or random statistical prediction methods.The model was applied to subsidence deformation prediction of a building in Xi'an.It was shown that the model is valid and feasible in predicting building subsidence deformation with good accuracy.
基金Project(51774219)supported by the National Natural Science Foundation of China
文摘This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.