According to the complex nonlinear relationship between gas emission and its effect factors, and the shortcomings that basic colony algorithm is slow, prone to early maturity and stagnation during the search, we intro...According to the complex nonlinear relationship between gas emission and its effect factors, and the shortcomings that basic colony algorithm is slow, prone to early maturity and stagnation during the search, we introduced a hybrid optimization strategy into a max-rain ant colony algorithm, then use this improved ant colony algorithm to estimate the scope of RBF network parameters. According to the amount of pheromone of discrete points, the authors obtained from the interval of net- work parameters, ants optimize network parameters. Finally, local spatial expansion is introduced to get further optimization of the network. Therefore, we obtain a better time efficiency and solution efficiency optimization model called hybrid improved max-min ant system (H1-MMAS). Simulation experiments, using these theory to predict the gas emission from the working face, show that the proposed method have high prediction feasibility and it is an effective method to predict gas emission.展开更多
This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time...This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time intervals through training the WNN with even time-interval samples. The method builds successive new model with the width of sliding window remaining invariable so as to obtain a dynamic prediction method for gas emission quantity. Furthermore, the method performs prediction by a self-developed WNN toolbox. Experiments indicate that such a model can overcome the deficiencies of the traditional static prediction model and can fully make use of the feature extraction capability of wavelet base function to reflect the geological feature of gas emission quantity dynamically. The method is characterized by simplicity, flexibility, small data scale, fast convergence rate and high prediction precision. In addition, the method is also characterized by certainty and repeatability of the predicted results. The effectiveness of this method is confirmed by simulation results. Therefore, this method will exert practical significance on promoting the application of WNN.展开更多
A grey smoothing model for predicting mine gas emission was presented by combining the grey system theory with the smoothing prediction technique. First of all, according to the variable sequence, GM(1,1) model was se...A grey smoothing model for predicting mine gas emission was presented by combining the grey system theory with the smoothing prediction technique. First of all, according to the variable sequence, GM(1,1) model was set up to predict the general development trend of variable as first fitted values, then the smoothing prediction technique was used to revise the fitted values so as to improve the accuracy of prediction. The results of application in the No.6 Coal Mine in Pingdingshan mining area show that the grey smoothing model has higher accuracy than that of GM(1,1) in predicting the variable sequence with strong fluctuation. The research provides a new scientific method for predicting mine gas emission.展开更多
基金Supported by the National Natural Science Foundation (70971059) the Liaoning Provincial Programs lbr Science and Technology Development (2011229011)
文摘According to the complex nonlinear relationship between gas emission and its effect factors, and the shortcomings that basic colony algorithm is slow, prone to early maturity and stagnation during the search, we introduced a hybrid optimization strategy into a max-rain ant colony algorithm, then use this improved ant colony algorithm to estimate the scope of RBF network parameters. According to the amount of pheromone of discrete points, the authors obtained from the interval of net- work parameters, ants optimize network parameters. Finally, local spatial expansion is introduced to get further optimization of the network. Therefore, we obtain a better time efficiency and solution efficiency optimization model called hybrid improved max-min ant system (H1-MMAS). Simulation experiments, using these theory to predict the gas emission from the working face, show that the proposed method have high prediction feasibility and it is an effective method to predict gas emission.
文摘This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time intervals through training the WNN with even time-interval samples. The method builds successive new model with the width of sliding window remaining invariable so as to obtain a dynamic prediction method for gas emission quantity. Furthermore, the method performs prediction by a self-developed WNN toolbox. Experiments indicate that such a model can overcome the deficiencies of the traditional static prediction model and can fully make use of the feature extraction capability of wavelet base function to reflect the geological feature of gas emission quantity dynamically. The method is characterized by simplicity, flexibility, small data scale, fast convergence rate and high prediction precision. In addition, the method is also characterized by certainty and repeatability of the predicted results. The effectiveness of this method is confirmed by simulation results. Therefore, this method will exert practical significance on promoting the application of WNN.
基金National Natural Science Foundation of China (No.40 172 0 5 9)
文摘A grey smoothing model for predicting mine gas emission was presented by combining the grey system theory with the smoothing prediction technique. First of all, according to the variable sequence, GM(1,1) model was set up to predict the general development trend of variable as first fitted values, then the smoothing prediction technique was used to revise the fitted values so as to improve the accuracy of prediction. The results of application in the No.6 Coal Mine in Pingdingshan mining area show that the grey smoothing model has higher accuracy than that of GM(1,1) in predicting the variable sequence with strong fluctuation. The research provides a new scientific method for predicting mine gas emission.