We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by u...We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by using the best update option. In the end, we forecast the intending series value in its mutually space. The example shows that it can increase the precision in the estimated process by selecting the best model steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means. Key words chaotic time series - parameter identification - optimal prediction model - improved change ruler method CLC number TP 273 Foundation item: Supported by the National Natural Science Foundation of China (60373062)Biography: JIANG Wei-jin (1964-), male, Professor, research direction: intelligent compute and the theory methods of distributed data processing in complex system, and the theory of software.展开更多
A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorith...A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.展开更多
In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the fram...In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the framework of MPC to relax the assumption of integrated white noise model in existing approaches. The introduced filters are globally optimal for linear systems with unmeasured disturbances that have unknown statistics. This enables the proposed MPC to better handle disturbances without access to disturbance statistics. As a result, the effort required for disturbance modeling can be alleviated. The proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances. Simulation results demonstrate that the proposed approach can provide an improved disturbance ?rejection performance over conventional approaches when applied to the control of systems with unmeasured disturbances that have arbitrary statistics.展开更多
This paper focuses on the dynamic control of distillation column with side reactors(SRC) for methyl acetate production. To obtain the optimum integrated structure and steady state simulation, the systematic design app...This paper focuses on the dynamic control of distillation column with side reactors(SRC) for methyl acetate production. To obtain the optimum integrated structure and steady state simulation, the systematic design approach based on the concept of independent reaction amount is applied to the process of SRC for methyl acetate production. In addition to the basic control loops, multi-variable model predictive control modular with methyl acetate concentration and temperature of sensitive plate is designed. Then, based on process simulation software Aspen Plus, dynamic simulation of SRC for methyl acetate production is used to verify the effectiveness of the control scheme.展开更多
First, a three-tier coordinated scheduling system consisting of a distribution network dispatch layer, a microgrid centralized control layer, and local control layer in the energy internet is proposed. The multi-time ...First, a three-tier coordinated scheduling system consisting of a distribution network dispatch layer, a microgrid centralized control layer, and local control layer in the energy internet is proposed. The multi-time scale optimal scheduling of the microgrid based on Model Predictive Control(MPC) is then studied, and the optimized genetic algorithm and the microgrid multi-time rolling optimization strategy are used to optimize the datahead scheduling phase and the intra-day optimization phase. Next, based on the three-tier coordinated scheduling architecture, the operation loss model of the distribution network is solved using the improved branch current forward-generation method and the genetic algorithm. The optimal scheduling of the distribution network layer is then completed. Finally, the simulation examples are used to compare and verify the validity of the method.展开更多
This paper proposes a new hybrid maximum power point tracking(MPPT)control strategy for grid-connected solar systems based on Incremental conductance—Particle Swarm Optimization and Model Predictive Controller(IncCon...This paper proposes a new hybrid maximum power point tracking(MPPT)control strategy for grid-connected solar systems based on Incremental conductance—Particle Swarm Optimization and Model Predictive Controller(IncCond-PSOMPC).The purpose of the suggested method is to create as much power as feasible from a PV system during environmental changes,then transfer it to the power grid.To accomplish this,a hybrid combination of incremental conductance(IncCond)and particle swarm optimization(PSO)is proposed to locate maximum power,followed by model predictive control(MPC)to track maximum power and control the boost converter to achieve high performance regardless of parameter variations.A two-level inverter,likewise,controlled by Model Predictive Control,is employed to inject the PV power generated.In this application,the MPC is based on minimizing the difference between the reference and prediction powers,which is computed to select the switching state of the inverter.The proposed system is simulated and evaluated in a variety of dynamic conditions using Matlab/Simulink.Results reveal that the proposed control mechanism is effective at tracking the maximum power point(MPP)with fewer power oscillations.展开更多
文摘We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by using the best update option. In the end, we forecast the intending series value in its mutually space. The example shows that it can increase the precision in the estimated process by selecting the best model steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means. Key words chaotic time series - parameter identification - optimal prediction model - improved change ruler method CLC number TP 273 Foundation item: Supported by the National Natural Science Foundation of China (60373062)Biography: JIANG Wei-jin (1964-), male, Professor, research direction: intelligent compute and the theory methods of distributed data processing in complex system, and the theory of software.
文摘A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.
基金Supported by the Startup Foundation of Hangzhou Dianzi University(ZX150204302002/009)the Open Project Program of the State Key Laboratory of Industrial Control Technology(Zhejiang University)National Natural Science Foundation of China(No.61374142,61273145,and 61273146)
文摘In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the framework of MPC to relax the assumption of integrated white noise model in existing approaches. The introduced filters are globally optimal for linear systems with unmeasured disturbances that have unknown statistics. This enables the proposed MPC to better handle disturbances without access to disturbance statistics. As a result, the effort required for disturbance modeling can be alleviated. The proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances. Simulation results demonstrate that the proposed approach can provide an improved disturbance ?rejection performance over conventional approaches when applied to the control of systems with unmeasured disturbances that have arbitrary statistics.
基金Supported by the National Natural Science Foundation of China(61673205,61503181,21727818)National Key R&D Program of China(2017YFB0307304)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20141461,BK20140953)the State Key Laboratory of Materials-Oriented Chemical Engineering Open Subject(kl16-07)
文摘This paper focuses on the dynamic control of distillation column with side reactors(SRC) for methyl acetate production. To obtain the optimum integrated structure and steady state simulation, the systematic design approach based on the concept of independent reaction amount is applied to the process of SRC for methyl acetate production. In addition to the basic control loops, multi-variable model predictive control modular with methyl acetate concentration and temperature of sensitive plate is designed. Then, based on process simulation software Aspen Plus, dynamic simulation of SRC for methyl acetate production is used to verify the effectiveness of the control scheme.
基金supported by Beijing Municipal Science Technology commission research(No.Z171100000317003)
文摘First, a three-tier coordinated scheduling system consisting of a distribution network dispatch layer, a microgrid centralized control layer, and local control layer in the energy internet is proposed. The multi-time scale optimal scheduling of the microgrid based on Model Predictive Control(MPC) is then studied, and the optimized genetic algorithm and the microgrid multi-time rolling optimization strategy are used to optimize the datahead scheduling phase and the intra-day optimization phase. Next, based on the three-tier coordinated scheduling architecture, the operation loss model of the distribution network is solved using the improved branch current forward-generation method and the genetic algorithm. The optimal scheduling of the distribution network layer is then completed. Finally, the simulation examples are used to compare and verify the validity of the method.
文摘This paper proposes a new hybrid maximum power point tracking(MPPT)control strategy for grid-connected solar systems based on Incremental conductance—Particle Swarm Optimization and Model Predictive Controller(IncCond-PSOMPC).The purpose of the suggested method is to create as much power as feasible from a PV system during environmental changes,then transfer it to the power grid.To accomplish this,a hybrid combination of incremental conductance(IncCond)and particle swarm optimization(PSO)is proposed to locate maximum power,followed by model predictive control(MPC)to track maximum power and control the boost converter to achieve high performance regardless of parameter variations.A two-level inverter,likewise,controlled by Model Predictive Control,is employed to inject the PV power generated.In this application,the MPC is based on minimizing the difference between the reference and prediction powers,which is computed to select the switching state of the inverter.The proposed system is simulated and evaluated in a variety of dynamic conditions using Matlab/Simulink.Results reveal that the proposed control mechanism is effective at tracking the maximum power point(MPP)with fewer power oscillations.