期刊文献+
共找到666篇文章
< 1 2 34 >
每页显示 20 50 100
A new analytical model for thermal stresses in multi-phase materials and lifetime prediction methods 被引量:3
1
作者 Ladislav Ceniga 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第2期189-206,共18页
Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distribute... Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimensions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)- matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase materials. As functions of the particle volume fraction v, the inter-particle distances dl, d2, d3 along three mutually per- pendicular axes, and the particle and envelope radii, R1 and R2, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep- resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials. 展开更多
关键词 Thermal stress Multi-phase material Lifetime prediction Analytical modelling
下载PDF
Prediction on Cold Chain Logistics Demand of Urban Residents in Jiangsu Province during the Twelfth Five-Year Plan Period——Based on Estimates of GM(1,1) Model 被引量:2
2
作者 ZHENG Yan-min1,ZHANG Yan-cai2,XU Hong-feng2 1.School of Economics and Management,Nanjing University of Science & Technology,Nanjing 210094,China 2.School of Economics and Management,Huaiyin Normal University,Huaian 223001,China 《Asian Agricultural Research》 2011年第11期38-40,45,共4页
This paper takes the total yield of products that need refrigerated transport as the impact factors of transport aggregate of cold chain logistics,such as meat,aquatic products,quick-frozen noodle,fruits,vegetables,da... This paper takes the total yield of products that need refrigerated transport as the impact factors of transport aggregate of cold chain logistics,such as meat,aquatic products,quick-frozen noodle,fruits,vegetables,dairy,and medicine.Through selecting the consumption data of urban residents on transported products via cold chain in Jiangsu Province from 2005 to 2000 as sample,this paper establishes grey prediction model GM(1,1) of cold chain logistics demand and uses DPS7.05 software for test,to predict the cold chain logistics demand of urban residents in Jiangsu Province during the Twelfth Five-Year Plan period.The results show that in the period 2010-2015,the cold chain logistics demand of urban residents in Jiangsu Province is 1 151.589 1,1 185.136 6,1 219.661 3,1 255.191 8,1 291.757 3,1 329.388 1 t respectively;in the period 2005-2010,the cold chain logistics demand of urban residents in Jiangsu Province increases at annual growth rate of 3.9%;in the period 2011-2015,the growth rate declines to some extent,increasing slowly at rate of 2.9%. 展开更多
关键词 COLD CHAIN LOGISTICS demand The Twelfth Five-Year
下载PDF
Neural network-based model for prediction of permanent deformation of unbound granular materials
3
作者 Ali Alnedawi Riyadh Al-Ameri Kali Prasad Nepal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第6期1231-1242,共12页
Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,... Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method. 展开更多
关键词 Flexible PAVEMENT design Unbound GRANULAR materials PERMANENT deformation (PD) Repeated load TRIAXIAL test (RLTT) prediction models Artificial neural network (ANN)
下载PDF
An integrated modeling method for prediction of sulfur content in agglomerate 被引量:4
4
作者 陈晓方 桂卫华 +1 位作者 王雅琳 吴敏 《Journal of Central South University of Technology》 2003年第2期145-150,共6页
Based on the idea of fusing modeling, an integrated prediction model for sintering process was proposed. A framework for sulfur content prediction was established, which integrated multi modeling ways together, includ... Based on the idea of fusing modeling, an integrated prediction model for sintering process was proposed. A framework for sulfur content prediction was established, which integrated multi modeling ways together, including mathematical model combined with neural network(NN), rule model based on empirical knowledge and model-choosing coordinator. Via metallurgic mechanism analysis and material balance computation, a mathematical model calculated the sulfur content in agglomerate by the material balance equation with some parameters predicted by NN method. In the other model, the relationship between sulfur content and key factors was described in the form of expert rules. The model-choosing coordinator based on fuzzy logic was introduced to decide the weight of result of each model according to process conditions. The model was tested by industrial application data and produced a relatively satisfactory prediction error. The model also preferably reflected the varying tendency of sulfur content in agglomerate as the evidence of its prediction performance. 展开更多
关键词 prediction model INTEGRATED modeling neural network material balance EXPERT RULE
下载PDF
Generating Time-Series Data Using Generative Adversarial Networks for Mobility Demand Prediction 被引量:1
5
作者 Subhajit Chatterjee Yung-Cheol Byun 《Computers, Materials & Continua》 SCIE EI 2023年第3期5507-5525,共19页
The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist... The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist and education-centric localities.In the upcoming arrival of electric kickboard vehicles,deploying a customer rental service is essential.Due to its freefloating nature,the shared electric kickboard is a common and practical means of transportation.Relocation plans for shared electric kickboards are required to increase the quality of service,and forecasting demand for their use in a specific region is crucial.Predicting demand accurately with small data is troublesome.Extensive data is necessary for training machine learning algorithms for effective prediction.Data generation is a method for expanding the amount of data that will be further accessible for training.In this work,we proposed a model that takes time-series customers’electric kickboard demand data as input,pre-processes it,and generates synthetic data according to the original data distribution using generative adversarial networks(GAN).The electric kickboard mobility demand prediction error was reduced when we combined synthetic data with the original data.We proposed Tabular-GAN-Modified-WGAN-GP for generating synthetic data for better prediction results.We modified The Wasserstein GAN-gradient penalty(GP)with the RMSprop optimizer and then employed Spectral Normalization(SN)to improve training stability and faster convergence.Finally,we applied a regression-based blending ensemble technique that can help us to improve performance of demand prediction.We used various evaluation criteria and visual representations to compare our proposed model’s performance.Synthetic data generated by our suggested GAN model is also evaluated.The TGAN-Modified-WGAN-GP model mitigates the overfitting and mode collapse problem,and it also converges faster than previous GAN models for synthetic data creation.The presented model’s performance is compared to existing ensemble and baseline models.The experimental findings imply that combining synthetic and actual data can significantly reduce prediction error rates in the mean absolute percentage error(MAPE)of 4.476 and increase prediction accuracy. 展开更多
关键词 Machine learning generative adversarial networks electric vehicle time-series TGAN WGAN-GP blend model demand prediction regression
下载PDF
Multi-Time Scale Operation and Simulation Strategy of the Park Based on Model Predictive Control
6
作者 Jun Zhao Chaoying Yang +1 位作者 Ran Li Jinge Song 《Energy Engineering》 EI 2024年第3期747-767,共21页
Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve... Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples. 展开更多
关键词 demand response model predictive control multiple time scales operating simulation
下载PDF
Computational discovery of energy materials in the era of big data and machine learning:A critical review 被引量:2
7
作者 Ziheng Lu 《Materials Reports(Energy)》 2021年第3期2-19,共18页
The discovery of novel materials with desired properties is essential to the advancements of energy-related technologies.Despite the rapid development of computational infrastructures and theoretical approaches,progre... The discovery of novel materials with desired properties is essential to the advancements of energy-related technologies.Despite the rapid development of computational infrastructures and theoretical approaches,progress so far has been limited by the empirical and serial nature of experimental work.Fortunately,the situation is changing thanks to the maturation of theoretical tools such as density functional theory,high-throughput screening,crystal structure prediction,and emerging approaches based on machine learning.Together these recent innovations in computational chemistry,data informatics,and machine learning have acted as catalysts for revolutionizing material design and hopefully will lead to faster kinetics in the development of energy-related industries.In this report,recent advances in material discovery methods are reviewed for energy devices.Three paradigms based on empiricism-driven experiments,database-driven high-throughput screening,and data informatics-driven machine learning are discussed critically.Key methodological advancements involved are reviewed including high-throughput screening,crystal structure prediction,and generative models for target material design.Their applications in energy-related devices such as batteries,catalysts,and photovoltaics are selectively showcased. 展开更多
关键词 Machine learning material discovery Crystal structure prediction Deep learning Generative model Inverse material design High throughput screening Density functional theory
下载PDF
Economic Model Predictive Control for Hot Water Based Heating Systems in Smart Buildings
8
作者 M. A. Ahmed Awadelrahman Yi Zong +1 位作者 Hongwei Li Carsten Agert 《Energy and Power Engineering》 2017年第4期112-119,共8页
This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating syste... This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load shifting compared with some reference cases. 展开更多
关键词 Building ENERGY Management System demand Response ECONOMIC model PREDICTIVE Control Heat PUMPS Smart Buildings Thermal ENERGY Storage
下载PDF
Modeling of Micropores Drilling Force for Printed Circuit Board Micro-holes Based on Energy Method
9
作者 郑小虎 阮浩 +2 位作者 陈宏博 刘骁佳 刘正好 《Journal of Donghua University(English Edition)》 CAS 2023年第5期525-530,共6页
The quality of printed circuit board(PCB)micro-hole processing directly determines the stability of the inner and outer circuit connections.Micro-hole drilling technology is a typical method for PCB micro-hole process... The quality of printed circuit board(PCB)micro-hole processing directly determines the stability of the inner and outer circuit connections.Micro-hole drilling technology is a typical method for PCB micro-hole processing.The problem of optimal control of its drilling force is one of the main factors affecting the quality of micro-hole machining.To address this problem,the thrust forces and torques in PCB drilling were first modeled and analyzed,and the corresponding prediction models were established.The drilling force analysis was carried out through the micro-hole drilling experiment,the specific cutting energy under different feed rates was calculated,the influence of the size effect was clarified,and the accuracy of the prediction model was verified.The result shows that during the drilling of glass fiber cloth,changes in the material removal mechanism are induced as the feed per revolution is varied.When the feed per revolution is less than the tool edge radius,the glass fiber is not cut by the main cutting edge,but is crushed and broken.When the feed per revolution is greater than the radius of the tool edge,the glass fiber is cut by the main cutting edge.At the same time,the established analytical model can accurately reflect the influence of the size effect on the drilling torque in PCB micro-hole drilling,and the error is within 10%.This method has certain practical application value in controlling PCB micro hole processing quality. 展开更多
关键词 printed circuit board(PCB) micro-hole drilling predictive model size effect multi-layer material
下载PDF
高质量发展视角下新阶段水利人才队伍建设机制研究 被引量:1
10
作者 樊传浩 龚瑶 倪景元 《水利经济》 北大核心 2024年第3期94-101,共8页
新阶段水利高质量发展亟须与之相适配的人才队伍,专业技术人才是推动新阶段水利高质量发展的骨干力量。从高质量发展视角出发,基于人力资本理论,搭建跨边界专业技术人才池,集聚并储备行业发展所需的关键人才,并从引进、培养、使用、评... 新阶段水利高质量发展亟须与之相适配的人才队伍,专业技术人才是推动新阶段水利高质量发展的骨干力量。从高质量发展视角出发,基于人力资本理论,搭建跨边界专业技术人才池,集聚并储备行业发展所需的关键人才,并从引进、培养、使用、评价、流动、激励全链条创新人才发展模式。基于灰色模型预测了人才需求特点,结合人力资本理论构建了跨边界人才池的开发机制和实施路径。结果表明:水利人才分布的空间异质性问题将持续存在,集聚并储备行业关键人才需要构建跨边界人才池;应通过内部培养和外部引进双轮驱动等措施满足行业人才需求,创新人才发展模式,从而在强化宏观调控的基础上实现人才的统筹调配、跨界蓄用与动态共享。 展开更多
关键词 水利高质量发展 人才需求 跨边界人才池 人才发展模式创新 灰色预测模型
下载PDF
2025-2035年中国天然石墨资源需求预测
11
作者 刘超 赵汀 +2 位作者 刘胜前 马哲 江美辉 《中国矿业》 北大核心 2024年第7期78-88,共11页
天然石墨广泛应用于传统工业和战略性新兴产业,是支撑我国高新技术发展的重要原材料。本文论述了我国天然石墨资源现状,并通过分析天然石墨主要消费部门需求,预测了未来耐火材料、铸造、铅笔、密封材料、摩擦材料、润滑吸附材料、锂电... 天然石墨广泛应用于传统工业和战略性新兴产业,是支撑我国高新技术发展的重要原材料。本文论述了我国天然石墨资源现状,并通过分析天然石墨主要消费部门需求,预测了未来耐火材料、铸造、铅笔、密封材料、摩擦材料、润滑吸附材料、锂电池负极材料等产业对天然石墨的需求。研究发现:我国天然石墨资源丰富,未来需求量将快速增长,预计到2025年、2030年、2035年我国天然石墨的需求量将分别达到109.0万t、188.3万t和278.3万t。全球天然石墨供给侧正在重塑,我国在全球天然石墨产业链供应链中的地位正在下降。我国石墨消费重心正从传统产业向战略性新兴产业转移,高端石墨产业发展面临机遇,为天然石墨产业发展带来新的增长点。通过健全天然石墨产业链和加强天然石墨资源保护力度,使我国从石墨资源大国发展成为石墨资源强国,支撑我国未来在新能源、关键装备密封润滑材料、高温材料等高端领域的石墨产品需求发展。 展开更多
关键词 天然石墨 需求预测 负极材料 战略性新兴产业 转型升级
下载PDF
数模联动的多特征工件加工能耗预测方法研究
12
作者 张华 马超 +2 位作者 鄢威 朱硕 江志刚 《组合机床与自动化加工技术》 北大核心 2024年第4期66-71,共6页
在实际切削加工过程中材料去除率是不断变化的,现有将其视为恒量的能耗建模方法难以实现能耗准确预测。为了提高切削过程能耗预测精度,提出了一种基于材料去除率的数模联动加工能耗预测方法。首先,基于切削过程刀具与工件的接触关系分... 在实际切削加工过程中材料去除率是不断变化的,现有将其视为恒量的能耗建模方法难以实现能耗准确预测。为了提高切削过程能耗预测精度,提出了一种基于材料去除率的数模联动加工能耗预测方法。首先,基于切削过程刀具与工件的接触关系分析了切入、完全切入和切出阶段材料去除率变化规律,并对相应的加工能耗特性进行了分析;其次,提出了数据驱动的刀具切入,切出阶段加工能耗预测方法,以及模型驱动的完全切入阶段加工能耗预测方法,实现加工过程能耗准确预测;最后,利用实验案例验证了所提模型及方法的有效性,为今后研究能耗预测精度奠定了基础。 展开更多
关键词 数模联动 材料去除率 多特征零件 加工能耗预测
下载PDF
鄂尔多斯红庆河采煤矿区生态需水研究
13
作者 姜庆宏 张靖雯 +2 位作者 郑春丽 王哲 龙文毫 《金属矿山》 CAS 北大核心 2024年第9期260-266,共7页
鄂尔多斯红庆河煤矿区处在西部干旱半干旱内陆区域,由于煤炭开采导致生态环境问题较为突出,该区域水资源短缺、供需失衡,严重制约了矿区的生态恢复。在充分的自然概况调查基础上,将红庆河煤矿区生态需水划分为天然生态需水和人工生态需... 鄂尔多斯红庆河煤矿区处在西部干旱半干旱内陆区域,由于煤炭开采导致生态环境问题较为突出,该区域水资源短缺、供需失衡,严重制约了矿区的生态恢复。在充分的自然概况调查基础上,将红庆河煤矿区生态需水划分为天然生态需水和人工生态需水2种类型。通过植被蒸散法对植被生态需水进行计算,使用马尔科夫链进行定性预测,利用灰色预测模型GM(1,1)进行定量预测。结果表明:以2020年为基准年,红庆河煤矿区总生态需水量为37.52×10^(7)m^(3),天然植被每平方千米乔木、灌木、草地生态需水量分别为1.11×10^(6)、1.06×10^(6)、0.36×10^(6)m^(3);人工生态需水量为1.39×10^(7)m^(3)。进一步对研究区生态需水进行定性、定量预测,规划年(2025年、2030年、2035年)矿区天然生态需水量相比基准年分别上升了0.61%、2.57%和4.57%;人工生态需水量分别上升了3.60%、11.51%和20.86%。研究结果可为该地区生态恢复中植被类型选择、水资源开发利用、合理调配水资源提供科学依据。 展开更多
关键词 生态需水 灰色预测模型 马尔科夫链 定量预测
下载PDF
计及需求响应的光热电站参与深度调峰的分层优化调度策略
14
作者 陈伟 刘文翰 +3 位作者 魏占宏 张晓英 李万伟 冯智慧 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期579-590,共12页
从源、荷两侧挖掘系统调峰潜力,建立计及需求响应的光热电站参与深度调峰的分层优化调度模型。上层从负荷侧出发,提出一种基于负荷分类的价格需求响应模型,可有效缓解系统调峰压力;中层从电源侧出发,利用光热电站灵活的调节特性在深度... 从源、荷两侧挖掘系统调峰潜力,建立计及需求响应的光热电站参与深度调峰的分层优化调度模型。上层从负荷侧出发,提出一种基于负荷分类的价格需求响应模型,可有效缓解系统调峰压力;中层从电源侧出发,利用光热电站灵活的调节特性在深度调峰时段协调火电机组参与辅助调峰,构建以运行总成本最小为目标函数的日前调度模型;下层提出一种基于模型预测控制的日内动态调整模型,在滚动优化的同时,通过状态反馈环节实时调整光热电站储热装置充放热修正日前调度计划。仿真结果表明,所提调度策略在降低系统调峰成本的同时能有效抑制风光以及负荷的短时功率波动,在保证系统安全稳定运行的前提下提升风光消纳率。 展开更多
关键词 调度 储热 模型预测控制 光热电站 需求响应 深度调峰
下载PDF
冻融循环作用下芳纶纤维增强混凝土力学性能研究
15
作者 罗恒勇 江俊松 赵康 《混凝土》 CAS 北大核心 2024年第2期34-38,共5页
芳纶纤维具有纤维含量高、密度小、韧性大等特点,对提升混凝土材料的力学性能有着巨大的潜力。以芳纶纤维为原料,对冻融循环作用下不同纤维体积掺量(1%、2%、4%)及纤维长径比(200、400、600)的芳纶纤维增强混凝土(AFRC)力学性能进行试... 芳纶纤维具有纤维含量高、密度小、韧性大等特点,对提升混凝土材料的力学性能有着巨大的潜力。以芳纶纤维为原料,对冻融循环作用下不同纤维体积掺量(1%、2%、4%)及纤维长径比(200、400、600)的芳纶纤维增强混凝土(AFRC)力学性能进行试验研究,得到了AFRC的抗压强度和抗拉强度。试验结果表明,随着冻融循环次数的增加,混凝土的抗压强度和抗拉强度均有所降低。在循环60次时,AFRC抗压强度和抗拉强度均降低50%左右。AFRC抗压强度随纤维体积掺量的增加而降低,随纤维长径比的增加而增加,抗拉强度基本保持不变。此外,基于试验数据建立了芳纶纤维增强混凝土抗压强度及抗拉强度的预测与转换模型。 展开更多
关键词 芳纶纤维 混凝土 力学性能 强度预测模型 复合材料
下载PDF
考虑空气源热泵负荷聚合参与的需求响应
16
作者 梁海平 谢鑫 李世航 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期273-280,共8页
基于“电网-聚合商-负荷”三级架构,提出空气源热泵负荷聚合参与需求响应的控制策略。供暖运营商作为热泵负荷的聚合商,在保证用户热舒适度的基础上,利用建筑本身的蓄能能力,结合分时电价最小化供热成本,并对负荷可调节潜力进行评估。... 基于“电网-聚合商-负荷”三级架构,提出空气源热泵负荷聚合参与需求响应的控制策略。供暖运营商作为热泵负荷的聚合商,在保证用户热舒适度的基础上,利用建筑本身的蓄能能力,结合分时电价最小化供热成本,并对负荷可调节潜力进行评估。当电网调度部门下发调控指令后,考虑用户舒适度和电网调节需求,基于多目标遗传算法分配各负荷调节量,在满足调控目标的同时可改善调控带来的聚合功率振荡、反弹负荷大等问题。最后,仿真验证所提策略的有效性。 展开更多
关键词 空气源热泵 需求响应 温控负荷 模型预测控制 聚合调控 负荷恢复
下载PDF
非对称循环载荷下铝基复合材料的疲劳寿命预测
17
作者 雷文平 《兵器材料科学与工程》 CAS CSCD 北大核心 2024年第6期85-90,共6页
铝基复合材料由不同力学性能和疲劳行为的多种材料组成。在非对称循环载荷下,各组分间的相互作用和影响使其疲劳寿命预测变得复杂。为解决这一问题,研究一种非对称循环载荷下铝基复合材料疲劳寿命预测方法。用Na_(3)Al F_(6)和Ti O_(2)... 铝基复合材料由不同力学性能和疲劳行为的多种材料组成。在非对称循环载荷下,各组分间的相互作用和影响使其疲劳寿命预测变得复杂。为解决这一问题,研究一种非对称循环载荷下铝基复合材料疲劳寿命预测方法。用Na_(3)Al F_(6)和Ti O_(2)粉末强化铝合金基体,制备出复合材料样品。设计非对称循环载荷加载条件。用Walker裂纹扩展式结合Chaboche模型进行铝基复合材料疲劳寿命预测,Chaboche模型能较好地描述材料在循环加载下的非线性行为;通过引入应力比参数,Walker公式可更准确地预测裂纹在不同应力水平下的扩展行为。将两者结合能更全面地考虑材料在疲劳过程中的各种因素,从而提高疲劳寿命预测的准确性。结果表明:随着应力幅值的增加,试件裂缝长度随之上升,同时随着循环圈数的增加,试件应力随之上升,这使得铝基复合材料疲劳寿命下降,且该方法的预测结果与实测值更接近,说明预测结果可靠。 展开更多
关键词 非对称 循环载荷 铝基复合材料 疲劳寿命预测 Chaboche模型 Walker公式
下载PDF
基于PIWT-IPSO-BP的污水厂出水COD含量的预测模型
18
作者 张净 窦慧芸 +1 位作者 蒋武 刘晓梅 《中国农村水利水电》 北大核心 2024年第9期15-20,28,共7页
在农业灌溉的领域中,化学需氧量(Chemical Oxygen Demand,COD)的测定是衡量水体中有机物污染程度的一个重要指标。当COD浓度超过60mg/L时,其对土壤质量和农作物的生长产生的负面影响成为不容忽视的问题。这一现象可能会严重影响农作物... 在农业灌溉的领域中,化学需氧量(Chemical Oxygen Demand,COD)的测定是衡量水体中有机物污染程度的一个重要指标。当COD浓度超过60mg/L时,其对土壤质量和农作物的生长产生的负面影响成为不容忽视的问题。这一现象可能会严重影响农作物的产量和质量,进而对农作物生产的可持续性构成挑战。因此,有必要精确预测污水处理厂出水COD浓度的变化趋势,从而促进其在农业灌溉中的有效应用。研究结合了改进的小波变换、改进的粒子群优化(Improved Particle Swarm Optimization,IPSO)算法和反向传播BP(Back Propagation,BP)神经网络作为预测模型。鉴于COD受到众多因素的影响,这些因素之间存在复杂的耦合关系,采用PCA进行特征提取。考虑到数据采集的过程中不可避免的噪声干扰,应用小波降噪对原始数据进行处理,以确保数据质量,提高模型准确性。在此基础上,基于BP神经网络算法构建污水处理厂出水COD的预测模型。为了解决BP神经网络参数选择可能遇到的盲目性问题,引入改进的粒子群算法对模型进行参数优化,以提高预测精度。实验结果表明,提出的PIWT-IPSO-BP模型预测效果良好,其平均绝对误差、均方根误差和决定系数分别为0.222、0.386和0.984。该模型在一定程度上改善了数据噪声、多因子制约等问题,为污水循环利用技术应用于农业灌溉方面提供了参考依据。 展开更多
关键词 化学需氧量 预测模型 小波变换 粒子群优化算法 BP神经网络
下载PDF
微胶囊相变材料改良粉砂土的导热系数及预测模型
19
作者 唐少容 殷磊 +1 位作者 杨强 柯德秀 《中国粉体技术》 CAS CSCD 2024年第3期112-123,共12页
【目的】针对季节冻土地区渠道冻融破坏,分析微胶囊相变材料(microencapsulated phase change materials,mPCM)改良粉砂土层渠基的温度场,对改良粉砂土的导热系数进行研究。【方法】以mPCM为改良剂,掺入渠基粉砂土形成mPCM改良粉砂土;对... 【目的】针对季节冻土地区渠道冻融破坏,分析微胶囊相变材料(microencapsulated phase change materials,mPCM)改良粉砂土层渠基的温度场,对改良粉砂土的导热系数进行研究。【方法】以mPCM为改良剂,掺入渠基粉砂土形成mPCM改良粉砂土;对mPCM改良粉砂土进行导热系数实验和内部结构表征;采用多元线性回归和支持向量机(support vector machine,SVM)方法分别建立mPCM改良粉砂土的导热系数预测模型。【结果】mPCM改良粉砂土导热系数与含水率、干密度、mPCM掺量有关,且受冰水相对含量、冰水相变潜热、mPCM相变潜热和mPCM填充密实作用的影响,具有明显的温度效应;mPCM改良粉砂土导热系数的变化与实验温度和mPCM相变温度有关,可分为快速降低、缓慢降低和逐步上升3个阶段;多元线性回归和SVM模型均能较好地拟合预测mPCM改良粉砂土的导热系数,但SVM模型更适用于表征mPCM改良粉砂土导热系数各影响因素间的非线性关系。【结论】mPCM改良粉砂土的导热系数提高能够有效调控渠基土温度场,减轻渠道冻害,且SVM模型能更加准确地进行导热系数预测。 展开更多
关键词 微胶囊相变材料 粉砂土 导热系数 预测模型 多元线性回归 支持向量机
下载PDF
基于改进灰色预测模型的港口物流需求预测研究——以上海港为例
20
作者 柳德才 张世林 《物流科技》 2024年第15期75-79,共5页
随着疫情防控政策的调整,我国外贸行业呈现快速增长态势。文章基于改进的灰色预测NGMG 1,(N)模型,运用MATLAB软件,以上海港2013至2022年的集装箱吞吐量为原始数据,预测未来五年上海港的集装箱吞吐量,并对改进的灰色NGMG 1,(N)模型预测... 随着疫情防控政策的调整,我国外贸行业呈现快速增长态势。文章基于改进的灰色预测NGMG 1,(N)模型,运用MATLAB软件,以上海港2013至2022年的集装箱吞吐量为原始数据,预测未来五年上海港的集装箱吞吐量,并对改进的灰色NGMG 1,(N)模型预测结果进行精度检验,结果显示该模型预测精度较高。最后基于预测结果,分析上海港未来五年物流需求趋势向好的主要原因并得出结论。 展开更多
关键词 灰色预测 NGMG 1 (N)模型 港口物流 需求预测
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部