Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urg...Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches.展开更多
COVID-19 turned out to be an infectious and life-threatening viral disease,and its swift and overwhelming spread has become one of the greatest challenges for the world.As yet,no satisfactory vaccine or medication has...COVID-19 turned out to be an infectious and life-threatening viral disease,and its swift and overwhelming spread has become one of the greatest challenges for the world.As yet,no satisfactory vaccine or medication has been developed that could guarantee its mitigation,though several efforts and trials are underway.Countries around the globe are striving to overcome the COVID-19 spread and while they are finding out ways for early detection and timely treatment.In this regard,healthcare experts,researchers and scientists have delved into the investigation of existing as well as new technologies.The situation demands development of a clinical decision support system to equip the medical staff ways to timely detect this disease.The state-of-the-art research in Artificial intelligence(AI),Machine learning(ML)and cloud computing have encouraged healthcare experts to find effective detection schemes.This study aims to provide a comprehensive review of the role of AI&ML in investigating prediction techniques for the COVID-19.A mathematical model has been formulated to analyze and detect its potential threat.The proposed model is a cloud-based smart detection algorithm using support vector machine(CSDC-SVM)with cross-fold validation testing.The experimental results have achieved an accuracy of 98.4%with 15-fold cross-validation strategy.The comparison with similar state-of-the-art methods reveals that the proposed CSDC-SVM model possesses better accuracy and efficiency.展开更多
In this study,we have proposed an artificial neural network(ANN)model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17,2020.The proposed model is...In this study,we have proposed an artificial neural network(ANN)model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17,2020.The proposed model is based on the existing data(training data)published in the Saudi Arabia Coronavirus disease(COVID-19)situation—Demographics.The Prey-Predator algorithm is employed for the training.Multilayer perceptron neural network(MLPNN)is used in this study.To improve the performance of MLPNN,we determined the parameters of MLPNN using the prey-predator algorithm(PPA).The proposed model is called the MLPNN–PPA.The performance of the proposed model has been analyzed by the root mean squared error(RMSE)function,and correlation coefficient(R).Furthermore,we tested the proposed model using other existing data recorded in Saudi Arabia(testing data).It is demonstrated that the MLPNN-PPA model has the highest performance in predicting the number of infected and recovering in Saudi Arabia.The results reveal that the number of infected persons will increase in the coming days and become a minimum of 9789.The number of recoveries will be 2000 to 4000 per day.展开更多
Detecting COVID-19 cases as early as possible became a critical issue that must be addressed to avoid the pandemic’s additional spread and early provide the appropriate treatment to the affected patients.This study a...Detecting COVID-19 cases as early as possible became a critical issue that must be addressed to avoid the pandemic’s additional spread and early provide the appropriate treatment to the affected patients.This study aimed to develop a COVID-19 diagnosis and prediction(AIMDP)model that could identify patients with COVID-19 and distinguish it from other viral pneumonia signs detected in chest computed tomography(CT)scans.The proposed system uses convolutional neural networks(CNNs)as a deep learning technology to process hundreds of CT chest scan images and speeds up COVID-19 case prediction to facilitate its containment.We employed the whale optimization algorithm(WOA)to select the most relevant patient signs.A set of experiments validated AIMDP performance.It demonstrated the superiority of AIMDP in terms of the area under the curve-receiver operating characteristic(AUC-ROC)curve,positive predictive value(PPV),negative predictive rate(NPR)and negative predictive value(NPV).AIMDP was applied to a dataset of hundreds of real data and CT images,and it was found to achieve 96%AUC for diagnosing COVID-19 and 98%for overall accuracy.The results showed the promising performance of AIMDP for diagnosing COVID-19 when compared to other recent diagnosing and predicting models.展开更多
The COVID-19 pandemic has caused trouble in people’s daily lives andruined several economies around the world, killing millions of people thus far. Itis essential to screen the affected patients in a timely and cost-...The COVID-19 pandemic has caused trouble in people’s daily lives andruined several economies around the world, killing millions of people thus far. Itis essential to screen the affected patients in a timely and cost-effective manner inorder to fight this disease. This paper presents the prediction of COVID-19 withChest X-Ray images, and the implementation of an image processing systemoperated using deep learning and neural networks. In this paper, a Deep Learning,Machine Learning, and Convolutional Neural Network-based approach for predicting Covid-19 positive and normal patients using Chest X-Ray pictures is proposed. In this study, machine learning tools such as TensorFlow were used forbuilding and training neural nets. Scikit-learn was used for machine learning fromend to end. Various deep learning features are used, such as Conv2D, Dense Net,Dropout, Maxpooling2D for creating the model. The proposed approach had aclassification accuracy of 96.43 percent and a validation accuracy of 98.33 percentafter training and testing the X-Ray pictures. Finally, a web application has beendeveloped for general users, which will detect chest x-ray images either as covidor normal. A GUI application for the Covid prediction framework was run. Achest X-ray image can be browsed and fed into the program by medical personnelor the general public.展开更多
A significant increase in the number of coronavirus cases can easily be noticed in most of the countries around the world.Inspite of the consistent preventive initiatives being taken to contain the spread of this viru...A significant increase in the number of coronavirus cases can easily be noticed in most of the countries around the world.Inspite of the consistent preventive initiatives being taken to contain the spread of this virus,the unabated increase in the cases is both alarming and intriguing.The role of mathematical models in predicting and estimating the spread of the virus,and identifying various preventive factors dependencies has been found important and effective in most of the previous pandemics like Severe Acute Respiratory Syndrome(SARS)2003.In this research work,authors have proposed the Susceptible-Infectected-Removed(SIR)model variation in order to forecast the pattern of coronavirus disease(COVID-19)spread for the upcoming eight weeks in perspective of Saudi Arabia.The study has been performed by using SIR model with a proposed simplification using average progression for further estimation ofβandγvalues for better curve fittings ratios.The predictive results of this study clearly show that under the current public health interventions,there will be an increase in the COVID-19 cases in Saudi Arabia in the next four weeks.Hence,a set of strong health primitives and precautionary measures are recommended in order to avoid and prevent the further spread of COVID-19 in Saudi Arabia.展开更多
Accurate forecasting of emerging infectious diseases can guide public health officials in making appropriate decisions related to the allocation of public health resources.Due to the exponential spread of the COVID-19...Accurate forecasting of emerging infectious diseases can guide public health officials in making appropriate decisions related to the allocation of public health resources.Due to the exponential spread of the COVID-19 infection worldwide,several computational models for forecasting the transmission and mortality rates of COVID-19 have been proposed in the literature.To accelerate scientific and public health insights into the spread and impact of COVID-19,Google released the Google COVID-19 search trends symptoms open-access dataset.Our objective is to develop 7 and 14-day-ahead forecasting models of COVID-19 transmission and mortality in the US using the Google search trends for COVID-19 related symptoms.Specifically,we propose a stacked long short-term memory(SLSTM)architecture for predicting COVID-19 confirmed and death cases using historical time series data combined with auxiliary time series data from the Google COVID-19 search trends symptoms dataset.Considering the SLSTM networks trained using historical data only as the base models,our base models for 7 and 14-day-ahead forecasting of COVID cases had the mean absolute percentage error(MAPE)values of 6.6%and 8.8%,respectively.On the other side,our proposed models had improved MAPE values of 3.2%and 5.6%,respectively.For 7 and 14-day-ahead forecasting of COVID-19 deaths,the MAPE values of the base models were 4.8%and 11.4%,while the improved MAPE values of our proposed models were 4.7%and 7.8%,respectively.We found that the Google search trends for“pneumonia,”“shortness of breath,”and“fever”are the most informative search trends for predicting COVID-19 transmission.We also found that the search trends for“hypoxia”and“fever”were the most informative trends for forecasting COVID-19 mortality.展开更多
The fast spread of coronavirus disease(COVID-19)caused by SARSCoV-2 has become a pandemic and a serious threat to the world.As of May 30,2020,this disease had infected more than 6 million people globally,with hundreds...The fast spread of coronavirus disease(COVID-19)caused by SARSCoV-2 has become a pandemic and a serious threat to the world.As of May 30,2020,this disease had infected more than 6 million people globally,with hundreds of thousands of deaths.Therefore,there is an urgent need to predict confirmed cases so as to analyze the impact of COVID-19 and practice readiness in healthcare systems.This study uses gradient boosting regression(GBR)to build a trained model to predict the daily total confirmed cases of COVID-19.The GBR method can minimize the loss function of the training process and create a single strong learner from weak learners.Experiments are conducted on a dataset of daily confirmed COVID-19 cases from January 22,2020,to May 30,2020.The results are evaluated on a set of evaluation performance measures using 10-fold cross-validation to demonstrate the effectiveness of the GBR method.The results reveal that the GBR model achieves 0.00686 root mean square error,the lowest among several comparative models.展开更多
Taking the COVID-19 data from 2020-1-23 to 3-21 days released by the China Health Protection Committee as the sample,the hospital remaining rate,mortality rate and cure rate are selected as covariates,and the contact ...Taking the COVID-19 data from 2020-1-23 to 3-21 days released by the China Health Protection Committee as the sample,the hospital remaining rate,mortality rate and cure rate are selected as covariates,and the contact infection rate is used as response variable to establish a high precision ADL model,results of return substitution show that the predicted value of contact infection rate almost coincides with the sample value,and shows three stages of change characteristics.After March 1,2020,the overall trend is downward,stable below 12%.Main influencing factors of contact infection rate are analyzed quantitatively.Based on this,the ARIMA(1,2,2)model is established to analyze and predict the mortality change trend.The results showed that the domestic COVID-19 mortality rate is stable near 4%after 2020-3-27.展开更多
Background: Angiotensin-converting enzyme 2 has been identified as the receptor that allows the entry of SarsCov2 into the human cell. Its expression in the kidney is 100 times higher than in the lung;thus, making the...Background: Angiotensin-converting enzyme 2 has been identified as the receptor that allows the entry of SarsCov2 into the human cell. Its expression in the kidney is 100 times higher than in the lung;thus, making the kidney an excellent target for SarsCov2 infection manifesting as renal failure (RF). The objective of this study was to determine the predictive factors of RF during COVID-19 in the Togolese context. Patients and Methods: This was a retrospective descriptive and analytical study conducted at the Lomé Anti-COVID Center including the records of patients hospitalized for COVID-19, of age ≥ 18 years and having performed a creatinemia. RF was defined by a GFR 2 calculated according to the MDRD formula. Patients were randomized into 2 groups according to GFRResults: 482 patients were selected for this study with a mean age of 58.02 years. Sixty-five percent of the patients were men, i.e., a sex ratio of 1.88. Fifty-two patients had RF, i.e., a frequency of 10.8%.There were 65% men (315 cases), for a sex ratio (M/F) of 1.88. Risk factors for renal failure in COVID-19 were age ≥ 65 years (ORa 2.42;CIa95% [1.17 - 4.95];p = 0.016), anemia (ORa 2.49;CIa95% [1.21 - 5.26];p = 0.015), moderate (ORa 13;CIa95% [2.30 - 2.44];p = 0.017), severe (ORa 26.2;CIa95% [4.85 - 4.93];p = 0.002) and critical (ORa 108;CIa95% [16.5 - 21.76];p Conclusion: Renal failure would therefore be related to the severity of COVID-19 and is the most formidable factor, conditioning the course of the disease and the patient’s vital prognosis.展开更多
COVID-19 is a contagious disease and its several variants put under stress in all walks of life and economy as well.Early diagnosis of the virus is a crucial task to prevent the spread of the virus as it is a threat t...COVID-19 is a contagious disease and its several variants put under stress in all walks of life and economy as well.Early diagnosis of the virus is a crucial task to prevent the spread of the virus as it is a threat to life in the whole world.However,with the advancement of technology,the Internet of Things(IoT)and social IoT(SIoT),the versatile data produced by smart devices helped a lot in overcoming this lethal disease.Data mining is a technique that could be used for extracting useful information from massive data.In this study,we used five supervised ML strategies for creating a model to analyze and forecast the existence of COVID-19 using the Kaggle dataset“COVID-19 Symptoms and Presence.”RapidMiner Studio ML software was used to apply the Decision Tree(DT),Random Forest(RF),K-Nearest Neighbors(K-NNs)and Naive Bayes(NB),Integrated Decision Tree(ID3)algorithms.To develop the model,the performance of each model was tested using 10-fold cross-validation and compared to major accuracy measures,Cohan’s kappa statistics,properly or mistakenly categorized cases and root means square error.The results demonstrate that DT outperforms other methods,with an accuracy of 98.42%and a root mean square error of 0.11.In the future,a devisedmodel will be highly recommendable and supportive for early prediction/diagnosis of disease by providing different data sets.展开更多
Drug target relationship(DTR)prediction is a rapidly evolving area of research in com-putational drug discovery.Despite recent advances in computational solutions that have overcome the challenges of in vitro and in v...Drug target relationship(DTR)prediction is a rapidly evolving area of research in com-putational drug discovery.Despite recent advances in computational solutions that have overcome the challenges of in vitro and in vivo experiments,most computational methods still focus on binary classification.They ignore the importance of binding affinity,which correctly distinguishes between on-targets and off-targets.In this study,we propose a deep learning model based on the microstruc-ture of compounds and proteins to predict drug-target binding affinity(DTA),which utilizes topo-logical structure information of drug molecules and sequence semantic information of proteins.In this model,graph attention network(GAT)is used to capture the deep features of the compound molecular graph,and bidirectional long short-term memory(BiLSTM)network is used to extract the protein sequence features,and the pharmacological context of DTA is obtained by combining the two.The results show that the proposed model has achieved superior performance in both cor-rectly predicting the value of interaction strength and correctly discriminating the ranking of bind-ing strength compared to the state-of-the-art baselines.A case study experiment on COVID-19 con-firms that the proposed DTA model can be used as an effective pre-screening tool in drug discovery.展开更多
In early December 2019,a new virus named“2019 novel coronavirus(2019-nCoV)”appeared in Wuhan,China.The disease quickly spread worldwide,resulting in the COVID-19 pandemic.In the currentwork,we will propose a novel f...In early December 2019,a new virus named“2019 novel coronavirus(2019-nCoV)”appeared in Wuhan,China.The disease quickly spread worldwide,resulting in the COVID-19 pandemic.In the currentwork,we will propose a novel fuzzy softmodal(i.e.,fuzzy-soft expert system)for early detection of COVID-19.Themain construction of the fuzzy-soft expert systemconsists of five portions.The exploratory study includes sixty patients(i.e.,fortymales and twenty females)with symptoms similar to COVID-19 in(Nanjing Chest Hospital,Department of Respiratory,China).The proposed fuzzy-soft expert systemdepended on five symptoms of COVID-19(i.e.,shortness of breath,sore throat,cough,fever,and age).We will use the algorithm proposed by Kong et al.to detect these patients who may suffer from COVID-19.In this way,the present system is beneficial to help the physician decide if there is any patient who has COVID-19 or not.Finally,we present the comparison between the present system and the fuzzy expert system.展开更多
Objective:The COVID-19 pandemic poses a significant threat to global health.Given the lack of studies on risk factors for COVID-19 progression at present,this study aimed to build a predictive model to predict the pro...Objective:The COVID-19 pandemic poses a significant threat to global health.Given the lack of studies on risk factors for COVID-19 progression at present,this study aimed to build a predictive model to predict the progression risk among hospitalized COVID-19 patients.Methods:We extracted data from 1074 mild and moderate COVID-19 patients from Electronic Health Records(EHRs)in a designated Wuhan hospital including demographic characteristics and clinical and laboratory information.Disease progression was defined as progressing to severe critical illness after admission.The LASSO regression was used to select the predicted variables and a logistic regression model was applied to build the predictive model.Nomogram was used to show the results.Results:Seven variables were included in the predictive model:age per 10 years(OR,1.15;95%CI,1.03-1.29),lactate dehydrogenase(OR,1.73;95%CI,1.14-2.62),neutrophil-to-lymphocyte ratio(OR,2.07;95%CI,1.42-3.02),eosinophil count(OR,2.10;95%CI,1.20-3.69),albumin(OR,2.37;95%CI,1.65-3.45),hemoglobin(OR,1.50;95%CI,1.10-2.05),D-dimer(OR,1.63;95%CI,1.19-2.23).The mean area under the receiver operating characteristic curve of the predictive model was 0.72(95%CI,0.69-0.76).Conclusions:This study built a predictive model that could effectively predict the progression risk among hospitalized COVID-19 patients.展开更多
目的:分析新型冠状病毒感染(COVID-19)相关心律失常的文献,探索该领域的研究现状、热点并预测未来的趋势,为后来的研究者提供借鉴。方法:选择Web of Science的核心合集数据库,每项研究都进行了文献计量和视觉分析,使用CiteSpace和VOSvie...目的:分析新型冠状病毒感染(COVID-19)相关心律失常的文献,探索该领域的研究现状、热点并预测未来的趋势,为后来的研究者提供借鉴。方法:选择Web of Science的核心合集数据库,每项研究都进行了文献计量和视觉分析,使用CiteSpace和VOSviewer软件生成知识图谱。结果:共鉴定出768篇文章,发文涉及美国、意大利和中国为首的319个国家/地区和4 366个机构,领先的研究机构是梅奥诊所和哈佛医学院。New England Journal of Medicine是该领域最常被引用的期刊。在6 687位作者中,Arbelo Elena撰写的研究最多,Guo T被共同引用的次数最多,心房纤颤是最常见的关键词。结论:随着COVID-19的暴发,对COVID-19所致新发/进行性心律失常事件的研究蓬勃发展,未来的研究者可能会对COVID-19感染后新发或遗留的快速性心律失常/缓慢性心律失常的发生机制进行进一步的探索。展开更多
目的分析COVID-19疫情暴发前后不同国家经季节和日历调整后的生育率(seasonally and calendar adjusted fertility rate,SAFR)趋势的变化及其影响因素。方法使用国际人类生育力数据库(Human Fertility Database,HFD)中28个国家自2012年...目的分析COVID-19疫情暴发前后不同国家经季节和日历调整后的生育率(seasonally and calendar adjusted fertility rate,SAFR)趋势的变化及其影响因素。方法使用国际人类生育力数据库(Human Fertility Database,HFD)中28个国家自2012年1月至2022年12月的月度SAFR数据,以2020年12月(2020年3月疫情暴发起点加9个月妊娠过程)为节点划分为疫情前(2012.1-2020.11)和疫情后(2020.12-2022.12)进行比较,使用中断时间序列方法分析各国疫情前后的SAFR趋势(短期波动和长期趋势)是否发生变化,使用秩和检验分析疫情前SAFR、人均GDP、公共卫生和社会措施(public health and social measures,PHSM)和失业率是否与SAFR趋势变化有关。结果疫情后28个国家中19个国家的SAFR出现短期下降,随后反弹。对于长期趋势,2个国家由下降趋势转为上升趋势,8个国家由上升趋势转为下降趋势,6个国家的SAFR保持不变。SAFR变化率下降主要集中在部分中欧国家以及地中海西岸的国家,而SAFR变化率增加的国家主要分布在北欧以及西欧地区。SAFR无短期波动的国家疫情前的SAFR低于有短期波动的国家(P=0.041),SAFR变化率下降国家的疫情前SAFR(P=0.005)与人均GDP(P=0.027)均低于SAFR变化率上升国家。未发现SAFR短期波动或长期趋势与PHSM严重程度指数或失业率存在关联。结论COVID-19疫情对28个国家的SAFR造成了不同的短期和长期影响,特别是经济水平和疫情前SAFR相对较低的国家可能更易遭到进一步打击。COVID-19疫情对各国人口的更长期影响值得进一步关注。展开更多
文摘Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches.
文摘COVID-19 turned out to be an infectious and life-threatening viral disease,and its swift and overwhelming spread has become one of the greatest challenges for the world.As yet,no satisfactory vaccine or medication has been developed that could guarantee its mitigation,though several efforts and trials are underway.Countries around the globe are striving to overcome the COVID-19 spread and while they are finding out ways for early detection and timely treatment.In this regard,healthcare experts,researchers and scientists have delved into the investigation of existing as well as new technologies.The situation demands development of a clinical decision support system to equip the medical staff ways to timely detect this disease.The state-of-the-art research in Artificial intelligence(AI),Machine learning(ML)and cloud computing have encouraged healthcare experts to find effective detection schemes.This study aims to provide a comprehensive review of the role of AI&ML in investigating prediction techniques for the COVID-19.A mathematical model has been formulated to analyze and detect its potential threat.The proposed model is a cloud-based smart detection algorithm using support vector machine(CSDC-SVM)with cross-fold validation testing.The experimental results have achieved an accuracy of 98.4%with 15-fold cross-validation strategy.The comparison with similar state-of-the-art methods reveals that the proposed CSDC-SVM model possesses better accuracy and efficiency.
文摘In this study,we have proposed an artificial neural network(ANN)model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17,2020.The proposed model is based on the existing data(training data)published in the Saudi Arabia Coronavirus disease(COVID-19)situation—Demographics.The Prey-Predator algorithm is employed for the training.Multilayer perceptron neural network(MLPNN)is used in this study.To improve the performance of MLPNN,we determined the parameters of MLPNN using the prey-predator algorithm(PPA).The proposed model is called the MLPNN–PPA.The performance of the proposed model has been analyzed by the root mean squared error(RMSE)function,and correlation coefficient(R).Furthermore,we tested the proposed model using other existing data recorded in Saudi Arabia(testing data).It is demonstrated that the MLPNN-PPA model has the highest performance in predicting the number of infected and recovering in Saudi Arabia.The results reveal that the number of infected persons will increase in the coming days and become a minimum of 9789.The number of recoveries will be 2000 to 4000 per day.
文摘Detecting COVID-19 cases as early as possible became a critical issue that must be addressed to avoid the pandemic’s additional spread and early provide the appropriate treatment to the affected patients.This study aimed to develop a COVID-19 diagnosis and prediction(AIMDP)model that could identify patients with COVID-19 and distinguish it from other viral pneumonia signs detected in chest computed tomography(CT)scans.The proposed system uses convolutional neural networks(CNNs)as a deep learning technology to process hundreds of CT chest scan images and speeds up COVID-19 case prediction to facilitate its containment.We employed the whale optimization algorithm(WOA)to select the most relevant patient signs.A set of experiments validated AIMDP performance.It demonstrated the superiority of AIMDP in terms of the area under the curve-receiver operating characteristic(AUC-ROC)curve,positive predictive value(PPV),negative predictive rate(NPR)and negative predictive value(NPV).AIMDP was applied to a dataset of hundreds of real data and CT images,and it was found to achieve 96%AUC for diagnosing COVID-19 and 98%for overall accuracy.The results showed the promising performance of AIMDP for diagnosing COVID-19 when compared to other recent diagnosing and predicting models.
基金support from Taif University Researchers Supporting Project number(TURSP-2020/73),Taif University,Taif,Saudi Arabia.
文摘The COVID-19 pandemic has caused trouble in people’s daily lives andruined several economies around the world, killing millions of people thus far. Itis essential to screen the affected patients in a timely and cost-effective manner inorder to fight this disease. This paper presents the prediction of COVID-19 withChest X-Ray images, and the implementation of an image processing systemoperated using deep learning and neural networks. In this paper, a Deep Learning,Machine Learning, and Convolutional Neural Network-based approach for predicting Covid-19 positive and normal patients using Chest X-Ray pictures is proposed. In this study, machine learning tools such as TensorFlow were used forbuilding and training neural nets. Scikit-learn was used for machine learning fromend to end. Various deep learning features are used, such as Conv2D, Dense Net,Dropout, Maxpooling2D for creating the model. The proposed approach had aclassification accuracy of 96.43 percent and a validation accuracy of 98.33 percentafter training and testing the X-Ray pictures. Finally, a web application has beendeveloped for general users, which will detect chest x-ray images either as covidor normal. A GUI application for the Covid prediction framework was run. Achest X-ray image can be browsed and fed into the program by medical personnelor the general public.
文摘A significant increase in the number of coronavirus cases can easily be noticed in most of the countries around the world.Inspite of the consistent preventive initiatives being taken to contain the spread of this virus,the unabated increase in the cases is both alarming and intriguing.The role of mathematical models in predicting and estimating the spread of the virus,and identifying various preventive factors dependencies has been found important and effective in most of the previous pandemics like Severe Acute Respiratory Syndrome(SARS)2003.In this research work,authors have proposed the Susceptible-Infectected-Removed(SIR)model variation in order to forecast the pattern of coronavirus disease(COVID-19)spread for the upcoming eight weeks in perspective of Saudi Arabia.The study has been performed by using SIR model with a proposed simplification using average progression for further estimation ofβandγvalues for better curve fittings ratios.The predictive results of this study clearly show that under the current public health interventions,there will be an increase in the COVID-19 cases in Saudi Arabia in the next four weeks.Hence,a set of strong health primitives and precautionary measures are recommended in order to avoid and prevent the further spread of COVID-19 in Saudi Arabia.
基金This work is supported in part by the Deanship of Scientific Research at Jouf University under Grant No.(CV-28–41).
文摘Accurate forecasting of emerging infectious diseases can guide public health officials in making appropriate decisions related to the allocation of public health resources.Due to the exponential spread of the COVID-19 infection worldwide,several computational models for forecasting the transmission and mortality rates of COVID-19 have been proposed in the literature.To accelerate scientific and public health insights into the spread and impact of COVID-19,Google released the Google COVID-19 search trends symptoms open-access dataset.Our objective is to develop 7 and 14-day-ahead forecasting models of COVID-19 transmission and mortality in the US using the Google search trends for COVID-19 related symptoms.Specifically,we propose a stacked long short-term memory(SLSTM)architecture for predicting COVID-19 confirmed and death cases using historical time series data combined with auxiliary time series data from the Google COVID-19 search trends symptoms dataset.Considering the SLSTM networks trained using historical data only as the base models,our base models for 7 and 14-day-ahead forecasting of COVID cases had the mean absolute percentage error(MAPE)values of 6.6%and 8.8%,respectively.On the other side,our proposed models had improved MAPE values of 3.2%and 5.6%,respectively.For 7 and 14-day-ahead forecasting of COVID-19 deaths,the MAPE values of the base models were 4.8%and 11.4%,while the improved MAPE values of our proposed models were 4.7%and 7.8%,respectively.We found that the Google search trends for“pneumonia,”“shortness of breath,”and“fever”are the most informative search trends for predicting COVID-19 transmission.We also found that the search trends for“hypoxia”and“fever”were the most informative trends for forecasting COVID-19 mortality.
基金The financial support provided from the Deanship of Scientific Research at King SaudUniversity,Research group No.RG-1441-502.
文摘The fast spread of coronavirus disease(COVID-19)caused by SARSCoV-2 has become a pandemic and a serious threat to the world.As of May 30,2020,this disease had infected more than 6 million people globally,with hundreds of thousands of deaths.Therefore,there is an urgent need to predict confirmed cases so as to analyze the impact of COVID-19 and practice readiness in healthcare systems.This study uses gradient boosting regression(GBR)to build a trained model to predict the daily total confirmed cases of COVID-19.The GBR method can minimize the loss function of the training process and create a single strong learner from weak learners.Experiments are conducted on a dataset of daily confirmed COVID-19 cases from January 22,2020,to May 30,2020.The results are evaluated on a set of evaluation performance measures using 10-fold cross-validation to demonstrate the effectiveness of the GBR method.The results reveal that the GBR model achieves 0.00686 root mean square error,the lowest among several comparative models.
基金funded by"Analysis of the Influence Mechanism of Modern Service Industry in Yunnan Province Based on Bayes Method"on the Project of Yunnan University Joint Fund.(2017FH001-068).
文摘Taking the COVID-19 data from 2020-1-23 to 3-21 days released by the China Health Protection Committee as the sample,the hospital remaining rate,mortality rate and cure rate are selected as covariates,and the contact infection rate is used as response variable to establish a high precision ADL model,results of return substitution show that the predicted value of contact infection rate almost coincides with the sample value,and shows three stages of change characteristics.After March 1,2020,the overall trend is downward,stable below 12%.Main influencing factors of contact infection rate are analyzed quantitatively.Based on this,the ARIMA(1,2,2)model is established to analyze and predict the mortality change trend.The results showed that the domestic COVID-19 mortality rate is stable near 4%after 2020-3-27.
文摘Background: Angiotensin-converting enzyme 2 has been identified as the receptor that allows the entry of SarsCov2 into the human cell. Its expression in the kidney is 100 times higher than in the lung;thus, making the kidney an excellent target for SarsCov2 infection manifesting as renal failure (RF). The objective of this study was to determine the predictive factors of RF during COVID-19 in the Togolese context. Patients and Methods: This was a retrospective descriptive and analytical study conducted at the Lomé Anti-COVID Center including the records of patients hospitalized for COVID-19, of age ≥ 18 years and having performed a creatinemia. RF was defined by a GFR 2 calculated according to the MDRD formula. Patients were randomized into 2 groups according to GFRResults: 482 patients were selected for this study with a mean age of 58.02 years. Sixty-five percent of the patients were men, i.e., a sex ratio of 1.88. Fifty-two patients had RF, i.e., a frequency of 10.8%.There were 65% men (315 cases), for a sex ratio (M/F) of 1.88. Risk factors for renal failure in COVID-19 were age ≥ 65 years (ORa 2.42;CIa95% [1.17 - 4.95];p = 0.016), anemia (ORa 2.49;CIa95% [1.21 - 5.26];p = 0.015), moderate (ORa 13;CIa95% [2.30 - 2.44];p = 0.017), severe (ORa 26.2;CIa95% [4.85 - 4.93];p = 0.002) and critical (ORa 108;CIa95% [16.5 - 21.76];p Conclusion: Renal failure would therefore be related to the severity of COVID-19 and is the most formidable factor, conditioning the course of the disease and the patient’s vital prognosis.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A5A1021944 and 2021R1A5A1021944)supported by Kyungpook National University Research Fund,2020.
文摘COVID-19 is a contagious disease and its several variants put under stress in all walks of life and economy as well.Early diagnosis of the virus is a crucial task to prevent the spread of the virus as it is a threat to life in the whole world.However,with the advancement of technology,the Internet of Things(IoT)and social IoT(SIoT),the versatile data produced by smart devices helped a lot in overcoming this lethal disease.Data mining is a technique that could be used for extracting useful information from massive data.In this study,we used five supervised ML strategies for creating a model to analyze and forecast the existence of COVID-19 using the Kaggle dataset“COVID-19 Symptoms and Presence.”RapidMiner Studio ML software was used to apply the Decision Tree(DT),Random Forest(RF),K-Nearest Neighbors(K-NNs)and Naive Bayes(NB),Integrated Decision Tree(ID3)algorithms.To develop the model,the performance of each model was tested using 10-fold cross-validation and compared to major accuracy measures,Cohan’s kappa statistics,properly or mistakenly categorized cases and root means square error.The results demonstrate that DT outperforms other methods,with an accuracy of 98.42%and a root mean square error of 0.11.In the future,a devisedmodel will be highly recommendable and supportive for early prediction/diagnosis of disease by providing different data sets.
文摘Drug target relationship(DTR)prediction is a rapidly evolving area of research in com-putational drug discovery.Despite recent advances in computational solutions that have overcome the challenges of in vitro and in vivo experiments,most computational methods still focus on binary classification.They ignore the importance of binding affinity,which correctly distinguishes between on-targets and off-targets.In this study,we propose a deep learning model based on the microstruc-ture of compounds and proteins to predict drug-target binding affinity(DTA),which utilizes topo-logical structure information of drug molecules and sequence semantic information of proteins.In this model,graph attention network(GAT)is used to capture the deep features of the compound molecular graph,and bidirectional long short-term memory(BiLSTM)network is used to extract the protein sequence features,and the pharmacological context of DTA is obtained by combining the two.The results show that the proposed model has achieved superior performance in both cor-rectly predicting the value of interaction strength and correctly discriminating the ranking of bind-ing strength compared to the state-of-the-art baselines.A case study experiment on COVID-19 con-firms that the proposed DTA model can be used as an effective pre-screening tool in drug discovery.
文摘In early December 2019,a new virus named“2019 novel coronavirus(2019-nCoV)”appeared in Wuhan,China.The disease quickly spread worldwide,resulting in the COVID-19 pandemic.In the currentwork,we will propose a novel fuzzy softmodal(i.e.,fuzzy-soft expert system)for early detection of COVID-19.Themain construction of the fuzzy-soft expert systemconsists of five portions.The exploratory study includes sixty patients(i.e.,fortymales and twenty females)with symptoms similar to COVID-19 in(Nanjing Chest Hospital,Department of Respiratory,China).The proposed fuzzy-soft expert systemdepended on five symptoms of COVID-19(i.e.,shortness of breath,sore throat,cough,fever,and age).We will use the algorithm proposed by Kong et al.to detect these patients who may suffer from COVID-19.In this way,the present system is beneficial to help the physician decide if there is any patient who has COVID-19 or not.Finally,we present the comparison between the present system and the fuzzy expert system.
基金supported by the National Key Technology R&D Program of China(No.2020YFC0840800).
文摘Objective:The COVID-19 pandemic poses a significant threat to global health.Given the lack of studies on risk factors for COVID-19 progression at present,this study aimed to build a predictive model to predict the progression risk among hospitalized COVID-19 patients.Methods:We extracted data from 1074 mild and moderate COVID-19 patients from Electronic Health Records(EHRs)in a designated Wuhan hospital including demographic characteristics and clinical and laboratory information.Disease progression was defined as progressing to severe critical illness after admission.The LASSO regression was used to select the predicted variables and a logistic regression model was applied to build the predictive model.Nomogram was used to show the results.Results:Seven variables were included in the predictive model:age per 10 years(OR,1.15;95%CI,1.03-1.29),lactate dehydrogenase(OR,1.73;95%CI,1.14-2.62),neutrophil-to-lymphocyte ratio(OR,2.07;95%CI,1.42-3.02),eosinophil count(OR,2.10;95%CI,1.20-3.69),albumin(OR,2.37;95%CI,1.65-3.45),hemoglobin(OR,1.50;95%CI,1.10-2.05),D-dimer(OR,1.63;95%CI,1.19-2.23).The mean area under the receiver operating characteristic curve of the predictive model was 0.72(95%CI,0.69-0.76).Conclusions:This study built a predictive model that could effectively predict the progression risk among hospitalized COVID-19 patients.
文摘目的:分析新型冠状病毒感染(COVID-19)相关心律失常的文献,探索该领域的研究现状、热点并预测未来的趋势,为后来的研究者提供借鉴。方法:选择Web of Science的核心合集数据库,每项研究都进行了文献计量和视觉分析,使用CiteSpace和VOSviewer软件生成知识图谱。结果:共鉴定出768篇文章,发文涉及美国、意大利和中国为首的319个国家/地区和4 366个机构,领先的研究机构是梅奥诊所和哈佛医学院。New England Journal of Medicine是该领域最常被引用的期刊。在6 687位作者中,Arbelo Elena撰写的研究最多,Guo T被共同引用的次数最多,心房纤颤是最常见的关键词。结论:随着COVID-19的暴发,对COVID-19所致新发/进行性心律失常事件的研究蓬勃发展,未来的研究者可能会对COVID-19感染后新发或遗留的快速性心律失常/缓慢性心律失常的发生机制进行进一步的探索。
文摘目的分析COVID-19疫情暴发前后不同国家经季节和日历调整后的生育率(seasonally and calendar adjusted fertility rate,SAFR)趋势的变化及其影响因素。方法使用国际人类生育力数据库(Human Fertility Database,HFD)中28个国家自2012年1月至2022年12月的月度SAFR数据,以2020年12月(2020年3月疫情暴发起点加9个月妊娠过程)为节点划分为疫情前(2012.1-2020.11)和疫情后(2020.12-2022.12)进行比较,使用中断时间序列方法分析各国疫情前后的SAFR趋势(短期波动和长期趋势)是否发生变化,使用秩和检验分析疫情前SAFR、人均GDP、公共卫生和社会措施(public health and social measures,PHSM)和失业率是否与SAFR趋势变化有关。结果疫情后28个国家中19个国家的SAFR出现短期下降,随后反弹。对于长期趋势,2个国家由下降趋势转为上升趋势,8个国家由上升趋势转为下降趋势,6个国家的SAFR保持不变。SAFR变化率下降主要集中在部分中欧国家以及地中海西岸的国家,而SAFR变化率增加的国家主要分布在北欧以及西欧地区。SAFR无短期波动的国家疫情前的SAFR低于有短期波动的国家(P=0.041),SAFR变化率下降国家的疫情前SAFR(P=0.005)与人均GDP(P=0.027)均低于SAFR变化率上升国家。未发现SAFR短期波动或长期趋势与PHSM严重程度指数或失业率存在关联。结论COVID-19疫情对28个国家的SAFR造成了不同的短期和长期影响,特别是经济水平和疫情前SAFR相对较低的国家可能更易遭到进一步打击。COVID-19疫情对各国人口的更长期影响值得进一步关注。