Electric field measurement holds immense significance in various domains.The power supply and signal acquisition units of the sensor may be coupled with ground wire interference,which could result in reduced measureme...Electric field measurement holds immense significance in various domains.The power supply and signal acquisition units of the sensor may be coupled with ground wire interference,which could result in reduced measurement accuracy.Moreover,this problem is often ignored by researchers.This paper investigated the origin of ground coupling interference in electric field sensors and its impact on measurement accuracy.A miniature undistorted electric field sensor with wireless transmission was compared with existing D-dot,microelectromechanical systems(MEMS),and optical sensors.The results indicate that MEMS and D-dot exhibit diminished accuracy in measuring electric fields under uniform conditions,owing to interference from ground wires.In the case of transmission lines with non-uniform conditions,the wireless sensor exhibited a measurement error of 5%,whereas the optical sensor showed an error rate of approximately 8%.However,the D-dot sensor displayed a measurement error exceeding 50%,whereas the MEMS sensor yielded an error as high as 150%.This means that the wireless sensor isolates the ground-coupled interference signal and realizes the distortion-free measurement of the electric field.The wireless sensors will find extensive applications in new power systems for intelligent equipment status perception,fault warning,and other scenarios.展开更多
This paper proposes a new method to predict the corona onset voltage for a rod- plane air gap, based on the support vector machine (SVM). Because the SVM is not limited by the size, dimension and nonlinearity of the...This paper proposes a new method to predict the corona onset voltage for a rod- plane air gap, based on the support vector machine (SVM). Because the SVM is not limited by the size, dimension and nonlinearity of the samples, this method can realize accurate prediction with few training data. Only electric field features are chosen as the input; no geometric parameter is included. Therefore, the experiment data of one kind of electrode can be used to predict the corona onset voltages of other electrodes with different sizes. With the experimental data obtained by ozone detection technology, and experimental data provided by the reference, the efficiency of the proposed method is validated. Accurate predicted results with an average relative less than 3% are obtained with only 6 experimental data.展开更多
With rapid growth of power demand, transmission capacity is also in urgent need of upgrading. In some cases, converting existing AC transmission lines to DC lines can Improve the transmission capacity and reduce the c...With rapid growth of power demand, transmission capacity is also in urgent need of upgrading. In some cases, converting existing AC transmission lines to DC lines can Improve the transmission capacity and reduce the construction investment. In this paper, the upstream finite element method was expanded to calculate the total electric field of same tower multi-circuit DC lines converted from double-circuit AC lines, and the validity of the algorithm was confirmed by experiments. Taking a DC line converted from a typical same tower 500 kV double-circuit AC transmission line as an example, the surface electric field and the ground total electric field in different pole conductor arrangement schemes were calculated and analyzed, and the critical height of pole conductors for DC lines in residential and non-residential area were determined. Then, the corridor width of DC and AC lines at critical height in residential and non-residential areas before and after AC-DC line transformation were compared. The results indicate that for DC lines converted from common 500 kV double-circuit AC lines, the ground total electric field can meet the requirements of corresponding standard with appropriate pole conductor arrangement schemes.展开更多
An atmospheric pressure plasma jet(APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical m...An atmospheric pressure plasma jet(APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical methods are used to characterize the plasma properties.The discharge modes of the APPJ with respect to applied voltage are studied for grounded electrode positions of 10 mm,40 mm and 80 mm,respectively,and the main discharge and plasma parameters are investigated.It is shown that an increase in the distance between the grounded electrode and high-voltage electrode results in a change in the discharge modes and discharge parameters.The discharges transit from having two discharge modes,dielectric barrier discharge(DBD) and jet,to having three,corona,DBD and jet,with increase in the distance from the grounded to the high-voltage electrodes.The maximum length of the APPJ reaches 3.8 cm at an applied voltage of 8 kV.The discharge power and transferred charges and spectral line intensities for species in the APPJ are influenced by the positions of the grounded electrode,while there is no obvious difference in the values of the electron excited temperature(EET) for the three grounded electrode positions.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2022YFB3206800in part by the National Natural Science Foundation of China under Grant 52125703.
文摘Electric field measurement holds immense significance in various domains.The power supply and signal acquisition units of the sensor may be coupled with ground wire interference,which could result in reduced measurement accuracy.Moreover,this problem is often ignored by researchers.This paper investigated the origin of ground coupling interference in electric field sensors and its impact on measurement accuracy.A miniature undistorted electric field sensor with wireless transmission was compared with existing D-dot,microelectromechanical systems(MEMS),and optical sensors.The results indicate that MEMS and D-dot exhibit diminished accuracy in measuring electric fields under uniform conditions,owing to interference from ground wires.In the case of transmission lines with non-uniform conditions,the wireless sensor exhibited a measurement error of 5%,whereas the optical sensor showed an error rate of approximately 8%.However,the D-dot sensor displayed a measurement error exceeding 50%,whereas the MEMS sensor yielded an error as high as 150%.This means that the wireless sensor isolates the ground-coupled interference signal and realizes the distortion-free measurement of the electric field.The wireless sensors will find extensive applications in new power systems for intelligent equipment status perception,fault warning,and other scenarios.
基金supported by National Natural Science Foundation of China(No.51477120)
文摘This paper proposes a new method to predict the corona onset voltage for a rod- plane air gap, based on the support vector machine (SVM). Because the SVM is not limited by the size, dimension and nonlinearity of the samples, this method can realize accurate prediction with few training data. Only electric field features are chosen as the input; no geometric parameter is included. Therefore, the experiment data of one kind of electrode can be used to predict the corona onset voltages of other electrodes with different sizes. With the experimental data obtained by ozone detection technology, and experimental data provided by the reference, the efficiency of the proposed method is validated. Accurate predicted results with an average relative less than 3% are obtained with only 6 experimental data.
文摘With rapid growth of power demand, transmission capacity is also in urgent need of upgrading. In some cases, converting existing AC transmission lines to DC lines can Improve the transmission capacity and reduce the construction investment. In this paper, the upstream finite element method was expanded to calculate the total electric field of same tower multi-circuit DC lines converted from double-circuit AC lines, and the validity of the algorithm was confirmed by experiments. Taking a DC line converted from a typical same tower 500 kV double-circuit AC transmission line as an example, the surface electric field and the ground total electric field in different pole conductor arrangement schemes were calculated and analyzed, and the critical height of pole conductors for DC lines in residential and non-residential area were determined. Then, the corridor width of DC and AC lines at critical height in residential and non-residential areas before and after AC-DC line transformation were compared. The results indicate that for DC lines converted from common 500 kV double-circuit AC lines, the ground total electric field can meet the requirements of corresponding standard with appropriate pole conductor arrangement schemes.
基金supported by National Natural Science Foundation of China under Grant Nos.51377075 and 51677083
文摘An atmospheric pressure plasma jet(APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical methods are used to characterize the plasma properties.The discharge modes of the APPJ with respect to applied voltage are studied for grounded electrode positions of 10 mm,40 mm and 80 mm,respectively,and the main discharge and plasma parameters are investigated.It is shown that an increase in the distance between the grounded electrode and high-voltage electrode results in a change in the discharge modes and discharge parameters.The discharges transit from having two discharge modes,dielectric barrier discharge(DBD) and jet,to having three,corona,DBD and jet,with increase in the distance from the grounded to the high-voltage electrodes.The maximum length of the APPJ reaches 3.8 cm at an applied voltage of 8 kV.The discharge power and transferred charges and spectral line intensities for species in the APPJ are influenced by the positions of the grounded electrode,while there is no obvious difference in the values of the electron excited temperature(EET) for the three grounded electrode positions.