Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effectiv...In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effective design and planning for estimating heating load(HL)and cooling load(CL)for energy saving have become paramount.In this vein,efforts have been made to predict the HL and CL using a univariate approach.However,this approach necessitates two models for learning HL and CL,requiring more computational time.Moreover,the one-dimensional(1D)convolutional neural network(CNN)has gained popularity due to its nominal computa-tional complexity,high performance,and low-cost hardware requirement.In this paper,we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN.Considering the building shape characteristics,one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps,a dense layer to interpret the maps,and an output layer with two neurons to predict the two real-valued responses,HL and CL.As the 1D data are not affected by excessive parameters,the pooling layer is not applied in this implementation.Besides,the use of pooling has been questioned by recent studies.The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error(MSE).Thus,the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE.展开更多
Electric cable shovel(ECS)is a complex production equipment,which is widely utilized in open-pit mines.Rational valuations of load is the foundation for the development of intelligent or unmanned ECS,since it directly...Electric cable shovel(ECS)is a complex production equipment,which is widely utilized in open-pit mines.Rational valuations of load is the foundation for the development of intelligent or unmanned ECS,since it directly influences the planning of digging trajectories and energy consumption.Load prediction of ECS mainly consists of two types of methods:physics-based modeling and data-driven methods.The former approach is based on known physical laws,usually,it is necessarily approximations of reality due to incomplete knowledge of certain processes,which introduces bias.The latter captures features/patterns from data in an end-to-end manner without dwelling on domain expertise but requires a large amount of accurately labeled data to achieve generalization,which introduces variance.In addition,some parts of load are non-observable and latent,which cannot be measured from actual system sensing,so they can’t be predicted by data-driven methods.Herein,an innovative hybrid physics-informed deep neural network(HPINN)architecture,which combines physics-based models and data-driven methods to predict dynamic load of ECS,is presented.In the proposed framework,some parts of the theoretical model are incorporated,while capturing the difficult-to-model part by training a highly expressive approximator with data.Prior physics knowledge,such as Lagrangian mechanics and the conservation of energy,is considered extra constraints,and embedded in the overall loss function to enforce model training in a feasible solution space.The satisfactory performance of the proposed framework is verified through both synthetic and actual measurement dataset.展开更多
To overcome the shortcomings of the energyconsumption prediction models in the application during thedesign stage, a quick prediction model for energy consumptionis proposed based on the decoupling method. Taking typi...To overcome the shortcomings of the energyconsumption prediction models in the application during thedesign stage, a quick prediction model for energy consumptionis proposed based on the decoupling method. Taking typicalresidential and office buildings in hot summer and cold winterzones as research objects, the influence factors on buildingenergy consumption are classified into intrinsic factors andoperational factors on the basis of the heat transfer principle.Then, using the intrinsic factors as the fundamental variablesand operational factors as the modified variables, the quickprediction model for the buildings in typical cold and hot zonesis proposed based on the decoupling method and the accuracyof the proposed model is verified. The results show thatcompared to the simulation results of EnergyPlus, the relativeerror of the prediction model is less than 1.5% ; comparedwith the real operating data of the building, the relative erroris 13.14% in 2011 and 8.56% in 2012 due to the fact that thecoincidence factor becomes larger than the design value about16% in 2011 and 13% in 2012. The finding reveals that theproposed model has the advantages of rapid calculationcompared with EnergyPlus and Design Builder when predictingbuilding energy consumption in building designs. The energyconsumption prediction model is of great practical value inoptimal operation and building designs.展开更多
With the exponential development of Chinese population,the massive energy consumption of buildings has recently become an interest subject.Although much research has been conducted on residential buildings,heating ven...With the exponential development of Chinese population,the massive energy consumption of buildings has recently become an interest subject.Although much research has been conducted on residential buildings,heating ventilation and air conditioning(HVAC),little research has been conducted on the relationship between student’s behavior,campus buildings,and their subsystems.Using classical seasonal decomposition,hierarchical clustering,and apriori algorithm,this paper aims to provide an empirical model for consumption data in campus library.Smart meter data from a library in Beijing,China,is adopted in this paper.Building electricity consumption patterns are investigated on an hourly/daily/monthly basis.According to the monthly analysis,electricity consumption peaks each year around June and December due to teaching programs,social exams,and outdoor temperatures.Hourly data analysis revealed a relatively stable consumption pattern.It shows three different types of daily load profiles.Daily data analysis demonstrated a high relationship between HVAC consumption and building total consumption,with a lift value of 5.9.Furthermore,links between temperature and subsystems were also discovered.Through a case study of library,this study provides a unique insight into campus electricity use.The results could help to develop operational strategies for campus facilities.展开更多
Reducing greenhouse gases (RHG) is going on actively in the international movement. In the field of architecture, RHG is an inevitable work. To establish a plan for RHG, firstly we need to reduce energy consumption. G...Reducing greenhouse gases (RHG) is going on actively in the international movement. In the field of architecture, RHG is an inevitable work. To establish a plan for RHG, firstly we need to reduce energy consumption. Greenhouse gas generated by energy consumption is the main cause of global warming. For this we should know that how much electricity consumption we use. The research targets of this study are commercial buildings with various businesses. Their electricity consumption was analyzed by business units rather than buildings. Each business was divided into 13 sectors according to industrial classification and electricity consumption was analyzed for each industry. For commercial buildings, the electricity consumption is done by the private sector and construction management is an autonomy system in private instead of an integrated management system. In this study, we classified and analyzed the electricity consumption characteristics according to collected data, analyzed the relationship between the electricity consumption with atmospheric temperature through SPSS, and developed an electricity prediction model.展开更多
Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand resp...Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last.展开更多
Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep le...Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep learning has emerged in the machine learning field achieving impressive performance in a vast range of tasks,from image classification to machine translation.Applications of deep learning models to the electric load forecasting problem are gaining interest among researchers as well as the industry,but a comprehensive and sound comparison among different-also traditional-architectures is not yet available in the literature.This work aims at filling the gap by reviewing and experimentally evaluating four real world datasets on the most recent trends in electric load forecasting,by contrasting deep learning architectures on short-term forecast(oneday-ahead prediction).Specifically,the focus is on feedforward and recurrent neural networks,sequence-to-sequence models and temporal convolutional neural networks along with architectural variants,which are known in the signal processing community but are novel to the load forecasting one.展开更多
Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be i...Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be investigated and studied to show their potential impact on load forecasting.The meteorological data are analyzed in this study through different data mining techniques aiming to predict the electrical load demand of a factory located in Riyadh,Saudi Arabia.The factory load and meteorological data used in this study are recorded hourly between 2016 and 2017.These data are provided by King Abdullah City for Atomic and Renewable Energy and Saudi Electricity Company at a site located in Riyadh.After applying the data pre-processing techniques to prepare the data,different machine learning algorithms,namely Artificial Neural Network and Support Vector Regression(SVR),are applied and compared to predict the factory load.In addition,for the sake of selecting the optimal set of features,13 different combinations of features are investigated in this study.The outcomes of this study emphasize selecting the optimal set of features as more features may add complexity to the learning process.Finally,the SVR algorithm with six features provides the most accurate prediction values to predict the factory load.展开更多
Due to the impact of occupants’activities in buildings,the relationship between electricity demand and ambient temperature will show different trends in the long-term and short-term,which show seasonal variation and ...Due to the impact of occupants’activities in buildings,the relationship between electricity demand and ambient temperature will show different trends in the long-term and short-term,which show seasonal variation and hourly variation,respectively.This makes it difficult for conventional data fitting methods to accurately predict the long-term and short-term power demand of buildings at the same time.In order to solve this problem,this paper proposes two approaches for fitting and predicting the electricity demand of office buildings.The first proposed approach splits the electricity demand data into fixed time periods,containing working hours and non-working hours,to reduce the impact of occupants’activities.After finding the most sensitive weather variable to non-working hour electricity demand,the building baseload and occupant activities can be predicted separately.The second proposed approach uses the artificial neural network(ANN)and fuzzy logic techniques to fit the building baseload,peak load,and occupancy rate with multi-variables of weather variables.In this approach,the power demand data is split into a narrower time range as no-occupancy hours,full-occupancy hours,and fuzzy hours between them,in which the occupancy rate is varying depending on the time and weather variables.The proposed approaches are verified by the real data from the University of Glasgow as a case study.The simulation results show that,compared with the traditional ANN method,both proposed approaches have less root-mean-square-error(RMSE)in predicting electricity demand.In addition,the proposed working and non-working hour based regression approach reduces the average RMSE by 35%,while the ANN with fuzzy hours based approach reduces the average RMSE by 42%,comparing with the traditional power demand prediction method.In addition,the second proposed approach can provide more information for building energy management,including the predicted baseload,peak load,and occupancy rate,without requiring additional building parameters.展开更多
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
基金supported in part by the Institute of Information and Communications Technology Planning and Evaluation(IITP)Grant by the Korean Government Ministry of Science and ICT(MSITArtificial Intelligence Innovation Hub)under Grant 2021-0-02068in part by the NationalResearch Foundation of Korea(NRF)Grant by theKorean Government(MSIT)under Grant NRF-2021R1I1A3060565.
文摘In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effective design and planning for estimating heating load(HL)and cooling load(CL)for energy saving have become paramount.In this vein,efforts have been made to predict the HL and CL using a univariate approach.However,this approach necessitates two models for learning HL and CL,requiring more computational time.Moreover,the one-dimensional(1D)convolutional neural network(CNN)has gained popularity due to its nominal computa-tional complexity,high performance,and low-cost hardware requirement.In this paper,we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN.Considering the building shape characteristics,one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps,a dense layer to interpret the maps,and an output layer with two neurons to predict the two real-valued responses,HL and CL.As the 1D data are not affected by excessive parameters,the pooling layer is not applied in this implementation.Besides,the use of pooling has been questioned by recent studies.The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error(MSE).Thus,the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE.
基金National Natural Science Foundation of China(Grant No.52075068)Shanxi Provincial Science and Technology Major Project(Grant No.20191101014).
文摘Electric cable shovel(ECS)is a complex production equipment,which is widely utilized in open-pit mines.Rational valuations of load is the foundation for the development of intelligent or unmanned ECS,since it directly influences the planning of digging trajectories and energy consumption.Load prediction of ECS mainly consists of two types of methods:physics-based modeling and data-driven methods.The former approach is based on known physical laws,usually,it is necessarily approximations of reality due to incomplete knowledge of certain processes,which introduces bias.The latter captures features/patterns from data in an end-to-end manner without dwelling on domain expertise but requires a large amount of accurately labeled data to achieve generalization,which introduces variance.In addition,some parts of load are non-observable and latent,which cannot be measured from actual system sensing,so they can’t be predicted by data-driven methods.Herein,an innovative hybrid physics-informed deep neural network(HPINN)architecture,which combines physics-based models and data-driven methods to predict dynamic load of ECS,is presented.In the proposed framework,some parts of the theoretical model are incorporated,while capturing the difficult-to-model part by training a highly expressive approximator with data.Prior physics knowledge,such as Lagrangian mechanics and the conservation of energy,is considered extra constraints,and embedded in the overall loss function to enforce model training in a feasible solution space.The satisfactory performance of the proposed framework is verified through both synthetic and actual measurement dataset.
文摘To overcome the shortcomings of the energyconsumption prediction models in the application during thedesign stage, a quick prediction model for energy consumptionis proposed based on the decoupling method. Taking typicalresidential and office buildings in hot summer and cold winterzones as research objects, the influence factors on buildingenergy consumption are classified into intrinsic factors andoperational factors on the basis of the heat transfer principle.Then, using the intrinsic factors as the fundamental variablesand operational factors as the modified variables, the quickprediction model for the buildings in typical cold and hot zonesis proposed based on the decoupling method and the accuracyof the proposed model is verified. The results show thatcompared to the simulation results of EnergyPlus, the relativeerror of the prediction model is less than 1.5% ; comparedwith the real operating data of the building, the relative erroris 13.14% in 2011 and 8.56% in 2012 due to the fact that thecoincidence factor becomes larger than the design value about16% in 2011 and 13% in 2012. The finding reveals that theproposed model has the advantages of rapid calculationcompared with EnergyPlus and Design Builder when predictingbuilding energy consumption in building designs. The energyconsumption prediction model is of great practical value inoptimal operation and building designs.
基金in part by the Doctoral Scientific Research Foundationof Beijing University of Civil Engineering and Architecture under Grant ZF15054in part by theFundamental Research Funds for Beijing University of Civil Engineering and Architecture underGrant X18066in part by the 2021 BUCEA Post Graduate Innovation Project under GrantPG2021011.
文摘With the exponential development of Chinese population,the massive energy consumption of buildings has recently become an interest subject.Although much research has been conducted on residential buildings,heating ventilation and air conditioning(HVAC),little research has been conducted on the relationship between student’s behavior,campus buildings,and their subsystems.Using classical seasonal decomposition,hierarchical clustering,and apriori algorithm,this paper aims to provide an empirical model for consumption data in campus library.Smart meter data from a library in Beijing,China,is adopted in this paper.Building electricity consumption patterns are investigated on an hourly/daily/monthly basis.According to the monthly analysis,electricity consumption peaks each year around June and December due to teaching programs,social exams,and outdoor temperatures.Hourly data analysis revealed a relatively stable consumption pattern.It shows three different types of daily load profiles.Daily data analysis demonstrated a high relationship between HVAC consumption and building total consumption,with a lift value of 5.9.Furthermore,links between temperature and subsystems were also discovered.Through a case study of library,this study provides a unique insight into campus electricity use.The results could help to develop operational strategies for campus facilities.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
基金Funded by the National Research Foundation of Korea (MEST) (NRF-2011-0000868)
文摘Reducing greenhouse gases (RHG) is going on actively in the international movement. In the field of architecture, RHG is an inevitable work. To establish a plan for RHG, firstly we need to reduce energy consumption. Greenhouse gas generated by energy consumption is the main cause of global warming. For this we should know that how much electricity consumption we use. The research targets of this study are commercial buildings with various businesses. Their electricity consumption was analyzed by business units rather than buildings. Each business was divided into 13 sectors according to industrial classification and electricity consumption was analyzed for each industry. For commercial buildings, the electricity consumption is done by the private sector and construction management is an autonomy system in private instead of an integrated management system. In this study, we classified and analyzed the electricity consumption characteristics according to collected data, analyzed the relationship between the electricity consumption with atmospheric temperature through SPSS, and developed an electricity prediction model.
基金supported by China Three Gorges Corporation(Key technology research and demonstration application of large-scale source-net-load-storage integration under the vision of carbon neutrality)Fundamental Research Funds for the Central Universities(2020MS021).
文摘Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last.
基金Innosuisse-Schweizerische Agentur für Innovationsförderung,Grant/Award Number:1155002544。
文摘Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep learning has emerged in the machine learning field achieving impressive performance in a vast range of tasks,from image classification to machine translation.Applications of deep learning models to the electric load forecasting problem are gaining interest among researchers as well as the industry,but a comprehensive and sound comparison among different-also traditional-architectures is not yet available in the literature.This work aims at filling the gap by reviewing and experimentally evaluating four real world datasets on the most recent trends in electric load forecasting,by contrasting deep learning architectures on short-term forecast(oneday-ahead prediction).Specifically,the focus is on feedforward and recurrent neural networks,sequence-to-sequence models and temporal convolutional neural networks along with architectural variants,which are known in the signal processing community but are novel to the load forecasting one.
基金Funding Statement:The researchers would like to thank the Deanship of Scientific Research,Qassim University for funding the publication of this project.
文摘Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be investigated and studied to show their potential impact on load forecasting.The meteorological data are analyzed in this study through different data mining techniques aiming to predict the electrical load demand of a factory located in Riyadh,Saudi Arabia.The factory load and meteorological data used in this study are recorded hourly between 2016 and 2017.These data are provided by King Abdullah City for Atomic and Renewable Energy and Saudi Electricity Company at a site located in Riyadh.After applying the data pre-processing techniques to prepare the data,different machine learning algorithms,namely Artificial Neural Network and Support Vector Regression(SVR),are applied and compared to predict the factory load.In addition,for the sake of selecting the optimal set of features,13 different combinations of features are investigated in this study.The outcomes of this study emphasize selecting the optimal set of features as more features may add complexity to the learning process.Finally,the SVR algorithm with six features provides the most accurate prediction values to predict the factory load.
文摘Due to the impact of occupants’activities in buildings,the relationship between electricity demand and ambient temperature will show different trends in the long-term and short-term,which show seasonal variation and hourly variation,respectively.This makes it difficult for conventional data fitting methods to accurately predict the long-term and short-term power demand of buildings at the same time.In order to solve this problem,this paper proposes two approaches for fitting and predicting the electricity demand of office buildings.The first proposed approach splits the electricity demand data into fixed time periods,containing working hours and non-working hours,to reduce the impact of occupants’activities.After finding the most sensitive weather variable to non-working hour electricity demand,the building baseload and occupant activities can be predicted separately.The second proposed approach uses the artificial neural network(ANN)and fuzzy logic techniques to fit the building baseload,peak load,and occupancy rate with multi-variables of weather variables.In this approach,the power demand data is split into a narrower time range as no-occupancy hours,full-occupancy hours,and fuzzy hours between them,in which the occupancy rate is varying depending on the time and weather variables.The proposed approaches are verified by the real data from the University of Glasgow as a case study.The simulation results show that,compared with the traditional ANN method,both proposed approaches have less root-mean-square-error(RMSE)in predicting electricity demand.In addition,the proposed working and non-working hour based regression approach reduces the average RMSE by 35%,while the ANN with fuzzy hours based approach reduces the average RMSE by 42%,comparing with the traditional power demand prediction method.In addition,the second proposed approach can provide more information for building energy management,including the predicted baseload,peak load,and occupancy rate,without requiring additional building parameters.