期刊文献+
共找到1,663篇文章
< 1 2 84 >
每页显示 20 50 100
Adaptive spatial-temporal graph attention network for traffic speed prediction
1
作者 ZHANG Xijun ZHANG Baoqi +2 位作者 ZHANG Hong NIE Shengyuan ZHANG Xianli 《High Technology Letters》 EI CAS 2024年第3期221-230,共10页
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic... Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction. 展开更多
关键词 traffic speed prediction spatial-temporal correlation self-adaptive adjacency ma-trix graph attention network(GAT) bidirectional gated recurrent unit(BiGRU)
下载PDF
Application of artificial neural networks for operating speed prediction at horizontal curves: a case study in Egypt 被引量:5
2
作者 Ahmed Mohamed Semeida 《Journal of Modern Transportation》 2014年第1期20-29,共10页
Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand ... Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable. 展开更多
关键词 Artificial neural networks Horizontal curve Multi-lane highways Operating speed prediction models Regression models Roadway factors
下载PDF
Combined Prediction for Vehicle Speed with Fixed Route 被引量:3
3
作者 Lipeng Zhang Wei Liu Bingnan Qi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期113-125,共13页
Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their dail... Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning,but the prediction accuracy still needs to be improved.The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy;problems,such as over fitting,occur in the process of improving prediction accuracy.The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction.By combining the two prediction algorithms,the fusion of prediction performance is achieved,the limit of the single prediction performance is crossed,and the goal of improving vehicle speed prediction performance is achieved.In this paper,an extraction method suitable for fixed route vehicle speed is designed.The application of Markov and back propagation(BP)neural network in predictions is introduced.Three new combined prediction methods,all named Markov and BP Neural Network(MBNN)combined prediction algorithm,are proposed,which make full use of the advantages of Markov and BP neural network algorithms.Finally,the comparison among the prediction methods has been carried out.The results show that the three MBNN models have improved by about 19%,28%,and 29%compared with the Markov prediction model,which has better performance in the single prediction models.Overall,the MBNN combined prediction models can improve the prediction accuracy by 25.3%on average,which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption. 展开更多
关键词 Plug-in hybrid electric vehicles Energy consumption Vehicle speed prediction MARKOV BP neural networks Combined prediction model
下载PDF
Short-term Wind Speed Prediction with a Two-layer Attention-based LSTM 被引量:3
4
作者 Jingcheng Qian Mingfang Zhu +1 位作者 Yingnan Zhao Xiangjian He 《Computer Systems Science & Engineering》 SCIE EI 2021年第11期197-209,共13页
Wind speed prediction is of great importance because it affects the efficiency and stability of power systems with a high proportion of wind power.Temporal-spatial wind speed features contain rich information;however,... Wind speed prediction is of great importance because it affects the efficiency and stability of power systems with a high proportion of wind power.Temporal-spatial wind speed features contain rich information;however,their use to predict wind speed remains one of the most challenging and less studied areas.This paper investigates the problem of predicting wind speeds for multiple sites using temporal and spatial features and proposes a novel two-layer attentionbased long short-term memory(LSTM),termed 2Attn-LSTM,a unified framework of encoder and decoder mechanisms to handle temporal-spatial wind speed data.To eliminate the unevenness of the original wind speed,we initially decompose the preprocessing data into IMF components by variational mode decomposition(VMD).Then,it encodes the spatial features of IMF components at the bottom of the model and decodes the temporal features to obtain each component's predicted value on the second layer.Finally,we obtain the ultimate prediction value after denormalization and superposition.We have performed extensive experiments for short-term predictions on real-world data,demonstrating that 2Attn-LSTM outperforms the four baseline methods.It is worth pointing out that the presented 2Atts-LSTM is a general model suitable for other spatial-temporal features. 展开更多
关键词 Wind speed prediction temporal-spatial features VMD LSTM attention mechanism
下载PDF
Floating Car Data Based Nonparametric Regression Model for Short-Term Travel Speed Prediction 被引量:2
5
作者 翁剑成 扈中伟 +1 位作者 于泉 任福田 《Journal of Southwest Jiaotong University(English Edition)》 2007年第3期223-230,共8页
A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways,... A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective. 展开更多
关键词 K-Nearest neighbor Short-term prediction Travel speed Nonparametric regression Intelligence transportation system( ITS Floating car data (FCD)
下载PDF
Functional-type Single-input-rule-modules Connected Neural Fuzzy System for Wind Speed Prediction 被引量:1
6
作者 Chengdong Li Li Wang +2 位作者 Guiqing Zhang Huidong Wang Fang Shang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期751-762,共12页
Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a... Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy. 展开更多
关键词 Fuzzy inference system(FIS) Iearning algorithm neural fuzzy system single input rule module wind speed prediction
下载PDF
Short‐time wind speed prediction based on Legendre multi‐wavelet neural network 被引量:1
7
作者 Xiaoyang Zheng Dongqing Jia +3 位作者 Zhihan Lv Chengyou Luo Junli Zhao Zeyu Ye 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期946-962,共17页
As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.Howeve... As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.However,due to the stochastic and un-certain nature of wind energy,more accurate forecasting is necessary for its more stable and safer utilisation.This paper proposes a Legendre multiwavelet‐based neural network model for non‐linear wind speed prediction.It combines the excellent properties of Legendre multi‐wavelets with the self‐learning capability of neural networks,which has rigorous mathematical theory support.It learns input‐output data pairs and shares weights within divided subintervals,which can greatly reduce computing costs.We explore the effectiveness of Legendre multi‐wavelets as an activation function.Mean-while,it is successfully being applied to wind speed prediction.In addition,the appli-cation of Legendre multi‐wavelet neural networks in a hybrid model in decomposition‐reconstruction mode to wind speed prediction problems is also discussed.Numerical results on real data sets show that the proposed model is able to achieve optimal per-formance and high prediction accuracy.In particular,the model shows a more stable performance in multi‐step prediction,illustrating its superiority. 展开更多
关键词 artificial neural network neural network time series wavelet transforms wind speed prediction
下载PDF
PREDICTION OF FLOW STRESS OF HIGH-SPEED STEEL DURING HOT DEFORMATION BY USING BP ARTIFICIAL NEURAL NETWORK 被引量:2
8
作者 J. T. Liu H.B. Chang +1 位作者 R.H. Wu T. Y. Hsu(Xu Zuyao) and X.R. Ruan( 1)Department of Plasticity Technology, Shanghai Jiao Tong University, Shanghai 200030, China 2)School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期394-400,共7页
The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃... The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy. 展开更多
关键词 T1 high-speed steel flow stress prediction of flow stress back propagation (BP) artificial neural network (ANN)
下载PDF
Wind Speed Prediction Using Chicken Swarm Optimization with Deep Learning Model
9
作者 R.Surendran Youseef Alotaibi Ahmad F.Subahi 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3371-3386,共16页
High precision and reliable wind speed forecasting have become a challenge for meteorologists.Convective events,namely,strong winds,thunderstorms,and tornadoes,along with large hail,are natural calamities that disturb... High precision and reliable wind speed forecasting have become a challenge for meteorologists.Convective events,namely,strong winds,thunderstorms,and tornadoes,along with large hail,are natural calamities that disturb daily life.For accurate prediction of wind speed and overcoming its uncertainty of change,several prediction approaches have been presented over the last few decades.As wind speed series have higher volatility and nonlinearity,it is urgent to present cutting-edge artificial intelligence(AI)technology.In this aspect,this paper presents an intelligent wind speed prediction using chicken swarm optimization with the hybrid deep learning(IWSP-CSODL)method.The presented IWSP-CSODL model estimates the wind speed using a hybrid deep learning and hyperparameter optimizer.In the presented IWSP-CSODL model,the prediction process is performed via a convolutional neural network(CNN)based long short-term memory with autoencoder(CBLSTMAE)model.To optimally modify the hyperparameters related to the CBLSTMAE model,the chicken swarm optimization(CSO)algorithm is utilized and thereby reduces the mean square error(MSE).The experimental validation of the IWSP-CSODL model is tested using wind series data under three distinct scenarios.The comparative study pointed out the better outcomes of the IWSP-CSODL model over other recent wind speed prediction models. 展开更多
关键词 WEATHER wind speed predictive model chicken swarm optimization hybrid deep learning
下载PDF
Spatio-Temporal Wind Speed Prediction Based on Variational Mode Decomposition
10
作者 Yingnan Zhao Guanlan Ji +2 位作者 Fei Chen Peiyuan Ji Yi Cao 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期719-735,共17页
Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal netw... Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal network(VASTN)method that takes advantage of both temporal and spatial correlations of wind speed.First,VASTN is a hybrid wind speed prediction model that combines VMD,squeeze-and-excitation network(SENet),and attention mechanism(AM)-based bidirectional long short-term memory(BiLSTM).VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions(IMF).Then,to extract the spatial features at the bottom of the model,each IMF employs an improved convolutional neural network algorithm based on channel AM,also known as SENet.Second,it combines BiLSTM and AM at the top layer to extract aggregated spatial features and capture temporal dependencies.Finally,VASTN accumulates the predictions of each IMF to obtain the predicted wind speed.This method employs VMD to reduce the randomness and instability of the original data before employing AM to improve prediction accuracy through mapping weight and parameter learning.Experimental results on real-world data demonstrate VASTN’s superiority over previous related algorithms. 展开更多
关键词 Short-term wind speed prediction variational mode decomposition attention mechanism SENet BiLSTM
下载PDF
Speed prediction models for car and sports utility vehicleat locations along four-lane median divided horizontal curves
11
作者 Avijit Maji Ayush Tyagi 《Journal of Modern Transportation》 2018年第4期278-284,共7页
Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(... Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony. 展开更多
关键词 Vehicle speed prediction model Four-lane median divided highway Horizontal curve Regression analysis The 85th percentile speed
下载PDF
Prediction of Wind Speed Using a Hybrid Regression-Optimization Approach
12
作者 Bhuvana Ramachandran Anbazhagan Swaminathan 《Journal of Power and Energy Engineering》 2023年第7期21-35,共15页
Predicting wind speed is a complex task that involves analyzing various meteorological factors such as temperature, humidity, atmospheric pressure, and topography. There are different approaches that can be used to pr... Predicting wind speed is a complex task that involves analyzing various meteorological factors such as temperature, humidity, atmospheric pressure, and topography. There are different approaches that can be used to predict wind speed, and a hybrid optimization approach is one of them. In this paper, the hybrid optimization approach combines a multiple linear regression approach with an optimization technique to achieve better results. In the context of wind speed prediction, this hybrid optimization approach can be used to improve the accuracy of existing prediction models. Here, a Grey Wolf Optimizer based Wind Speed Prediction (GWO-WSP) method is proposed. This approach is tested on the 2016, 2017, 2018, and 2019 Raw Data files from the Great Lakes Environmental Research Laboratories and the National Oceanic and Atmospheric Administration’s (GLERL-NOAA) Chicago Metadata Archive. The test results show that the implementation is successful and the approach yields accurate and feasible results. The computation time for execution of the algorithm is also superior compared to the existing methods in literature. 展开更多
关键词 Wind speed prediction Multiple Linear Regression Grey Wolf Optimizer Accuracy of Results Wind Power
下载PDF
A fault prediction method for catenary of high-speed rails based on meteorological conditions
13
作者 Sheng Lin Qinyang Yu +2 位作者 Zhen Wang Ding Feng Shibin Gao 《Journal of Modern Transportation》 2019年第3期211-221,共11页
Fault frequency of catenary is related to meteo-rological conditions. In this work, based on the historical data, catenary fault frequency and weather-related fault rate are introduced to analyse the correlation betwe... Fault frequency of catenary is related to meteo-rological conditions. In this work, based on the historical data, catenary fault frequency and weather-related fault rate are introduced to analyse the correlation between catenary faults and meteorological conditions, and further the effect of meteorological conditions on catenary oper-ation. Moreover, machine learning is used for catenary fault prediction. As with the single decision tree, only a small number of training samples can be classified cor-rectly by each weak classifier, the AdaBoost algorithm is adopted to adjust the weights of misclassified samples and weak classifiers, and train multiple weak classifiers. Finally, the weak classifiers are combined to construct a strong classifier, with which the final prediction result is obtained. In order to validate the prediction method, an example is provided based on the historical data from a railway bureau of China. The result shows that the mapping relation between meteorological conditions and catenary faults can be established accurately by AdaBoost algorithm. The AdaBoost algorithm can accurately predict a catenary fault if the meteorological conditions are provided. 展开更多
关键词 HIGH-speed RAIL CATENARY TRIP FAULT prediction Data processing METEOROLOGICAL conditions
下载PDF
Model predictive control of rigid spacecraft with two variable speed control moment gyroscopes 被引量:3
14
作者 Pengcheng WU Hao WEN +1 位作者 Ti CHEN Dongping JIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第11期1551-1564,共14页
In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematica... In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematical model is constructed by taking the spacecraft and the gyroscopes together as an integrated system, with the coupling interaction between them considered. To overcome the singular issues of the VSCMGs due to the conventional torque-based method, the first-order derivative of gimbal rates and the second-order derivative of the rotor spinning velocity, instead of the gyroscope torques, are taken as input variables. Moreover, taking external disturbances into account, a feedback control law is designed for the system based on a method of nonlinear model predictive control (NMPC). The attitude maneuver can be realized fast and smoothly by using the proposed controller in this paper. 展开更多
关键词 integrated system variable speed control moment gyroscope (VSCMG) nonlinear model predictive control (NMPC)
下载PDF
Performance of the CMA-GD Model in Predicting Wind Speed at Wind Farms in Hubei, China 被引量:1
15
作者 许沛华 成驰 +3 位作者 王文 陈正洪 钟水新 张艳霞 《Journal of Tropical Meteorology》 SCIE 2023年第4期473-481,共9页
This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two win... This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two wind farms in Suizhou serve as the actual observation data for comparison and testing.At the same time,the wind speed predicted by the EC model is also included for comparative analysis.The results indicate that the CMA-GD model performs better than the EC model in Wind Farm A.The CMA-GD model exhibits a monthly average correlation coefficient of 0.56,root mean square error of 2.72 m s^(-1),and average absolute error of 2.11 m s^(-1).In contrast,the EC model shows a monthly average correlation coefficient of 0.51,root mean square error of 2.83 m s^(-1),and average absolute error of 2.21 m s^(-1).Conversely,in Wind Farm B,the EC model outperforms the CMA-GD model.The CMA-GD model achieves a monthly average correlation coefficient of 0.55,root mean square error of 2.61 m s^(-1),and average absolute error of 2.13 m s^(-1).By contrast,the EC model displays a monthly average correlation coefficient of 0.63,root mean square error of 2.04 m s^(-1),and average absolute error of 1.67 m s^(-1). 展开更多
关键词 CMA-GD wind speed prediction wind farm root mean square error performance evaluation
下载PDF
Model predictive current control for PMSM driven by three-level inverter based on fractional sliding mode speed observer 被引量:1
16
作者 TENG Qing-fang LUO Wei-duo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第4期358-364,共7页
Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by ... Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme. 展开更多
关键词 permanent magnet synchronous motor(PMSM) three-level inverter fractional sliding mode speed observer model predictive current control(MPCC)
下载PDF
Improvement of Rainfall Prediction Model by Using Fuzzy Logic
17
作者 Md. Anisur Rahman 《American Journal of Climate Change》 2020年第4期391-399,共9页
This paper presents the improvement of the fuzzy inference model for predicting rainfall. Fuzzy rule based system is used in this study to predict rainfall. Fuzzy inference is the actual procedure of mapping with a gi... This paper presents the improvement of the fuzzy inference model for predicting rainfall. Fuzzy rule based system is used in this study to predict rainfall. Fuzzy inference is the actual procedure of mapping with a given set of input and output through a set of fuzzy systems. Two operations were performed on the fuzzy logic model;the fuzzification operation and defuzzification operation. This study is obtaining two input variables and one output variable. The input variables are temperature and wind speed at a particular time and output variable is the amount of predictable rainfall. Temperature, wind speed and rainfall have to construct eight equations for different categories and which are shows the diagram of the graph. Fuzzy levels and membership functions obtained after minimum composition of inference part of the fuzzifications done for temperature and wind speed are considered as they represent the environmental condition enhance a rainfall occurrence which is effect on agricultural production. 展开更多
关键词 Fuzzy Logic Membership Function TEMPERATURE Wind speed predicted Rainfall
下载PDF
Prediction of the Cyclic Life of Pieces with Macrocracks by Thermographic Method
18
作者 Valerik S. Ayrapetyan George A. Kurilenko Aelita V. Shaburova 《Optics and Photonics Journal》 2018年第6期165-172,共8页
To improve the accuracy for prediction of cyclic life of pieces with macrocracks we propose to use a new thermographic method. Traditionally this question is solved on the basis Paris formula which connects the speed ... To improve the accuracy for prediction of cyclic life of pieces with macrocracks we propose to use a new thermographic method. Traditionally this question is solved on the basis Paris formula which connects the speed of crack growth (SCG) with Stress intensity factor K. However parameter K is not identical to the SCG because K doesn’t consider non-linear processes at the top of crack (TC). That is why the using K gives the considerable error. For overcoming this problem we proposed instead of K to connect SCG with another diagnostic parameter, such as ΔS(1c)—increment of specific entropy for cycle (ISE) at the TC, which can be calculated with sufficient accuracy through passive temperature field on the surface of tested object. Parameter ISE can be obtained both simultaneously with building of a kinetic fatigue diagram and on the basis of measuring of temperature under exploitation of piece. In both cases the prediction of cyclic lifetime is much higher than with the help parameter K. Besides parameter ISE allows to follow the crack development inside tested object. This means that suggested parameter ISE is more universal and convenient than traditional parameter K. 展开更多
关键词 Change of Temperature speed of CRACK Growth Specific ENTROPY Accuracy of prediction
下载PDF
Multi-Scale Variation Prediction of PM2.5 Concentration Based on a Monte Carlo Method
19
作者 Chen Ding Guizhi Wang Qi Liu 《Journal on Big Data》 2019年第2期55-69,共15页
Haze concentration prediction,especially PM2.5,has always been a significant focus of air quality research,which is necessary to start a deep study.Aimed at predicting the monthly average concentration of PM2.5 in Bei... Haze concentration prediction,especially PM2.5,has always been a significant focus of air quality research,which is necessary to start a deep study.Aimed at predicting the monthly average concentration of PM2.5 in Beijing,a novel method based on Monte Carlo model is conducted.In order to fully exploit the value of PM2.5 data,we take logarithmic processing of the original PM2.5 data and propose two different scales of the daily concentration and the daily chain development speed of PM2.5 respectively.The results show that these data are both approximately normal distribution.On the basis of the results,a Monte Carlo method can be applied to establish a probability model of normal distribution based on two different variables and random sampling numbers can also be generated by computer.Through a large number of simulation experiments,the average monthly concentration of PM2.5 in Beijing and the general trend of PM2.5 can be obtained.By comparing the errors between the real data and the predicted data,the Monte Carlo method is reliable in predicting the PM2.5 monthly mean concentration in the area.This study also provides a feasible method that may be applied in other studies to predict other pollutants with large scale time series data. 展开更多
关键词 Monte Carlo method random sampling PM2.5 concentration chain development speed trend prediction
下载PDF
Comparison of Different Added Power in Waves Prediction Methods
20
作者 CHEN Weimin LI Jianpeng +1 位作者 DONG Guoxiang XING Lei 《Journal of Shipping and Ocean Engineering》 2018年第1期21-29,共9页
In order to predict the speed loss in the actual sea states more precisely, delivered power shall be measured more accurately as an input. Therefore, based on a 50,000 DWT tanker, various results obtained from differe... In order to predict the speed loss in the actual sea states more precisely, delivered power shall be measured more accurately as an input. Therefore, based on a 50,000 DWT tanker, various results obtained from different prediction methods were compared by a series of model tests performed in calm water and in waves. It is shown that speed loss deprived from RTIM (resistance and thrust identity method) method in regular waves test could satisfy the engineering requirements most. 展开更多
关键词 Added power model test speed loss sea keeping prediction self propulsion test in waves.
下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部