Accurate estimation of the remaining useful life(RUL)of lithium-ion batteries is critical for their large-scale deployment as energy storage devices in electric vehicles and stationary storage.A fundamental understand...Accurate estimation of the remaining useful life(RUL)of lithium-ion batteries is critical for their large-scale deployment as energy storage devices in electric vehicles and stationary storage.A fundamental understanding of the factors affecting RUL is crucial for accelerating battery technology development.However,it is very challenging to predict RUL accurately because of complex degradation mechanisms occurring within the batteries,as well as dynamic operating conditions in practical applications.Moreover,due to insignificant capacity degradation in early stages,early prediction of battery life with early cycle data can be more difficult.In this paper,we propose a hybrid deep learning model for early prediction of battery RUL.The proposed method can effectively combine handcrafted features with domain knowledge and latent features learned by deep networks to boost the performance of RUL early prediction.We also design a non-linear correlation-based method to select effective domain knowledge-based features.Moreover,a novel snapshot ensemble learning strategy is proposed to further enhance model generalization ability without increasing any additional training cost.Our experimental results show that the proposed method not only outperforms other approaches in the primary test set having a similar distribution as the training set,but also generalizes well to the secondary test set having a clearly different distribution with the training set.The PyTorch implementation of our proposed approach is available at https://github.com/batteryrul/battery_rul_early_prediction.展开更多
Accurate prediction of the remaining useful life(RUL)of lithium-ion batteries(LIBs)is pivotal for enhancing their operational efficiency and safety in diverse applications.Beyond operational advantages,precise RUL pre...Accurate prediction of the remaining useful life(RUL)of lithium-ion batteries(LIBs)is pivotal for enhancing their operational efficiency and safety in diverse applications.Beyond operational advantages,precise RUL predictions can also expedite advancements in cell design and fast-charging methodologies,thereby reducing cycle testing durations.Despite artificial neural networks(ANNs)showing promise in this domain,determining the best-fit architecture across varied datasets and optimization approaches remains challenging.This study introduces a machine learning framework for systematically evaluating multiple ANN architectures.Using only 30%of a training dataset derived from 124 LIBs subjected to various charging regimes,an extensive evaluation is conducted across 7 ANN architectures.Each architecture is optimized in terms of hyperparameters using this framework,a process that spans 145 days on an NVIDIA GeForce RTX 4090 GPU.By optimizing each model to its best configuration,a fair and standardized basis for comparing their RUL predictions is established.The research also examines the impact of different cycling windows on predictive accuracy.Using a stratified partitioning technique underscores the significance of consistent dataset representation across subsets.Significantly,using only the features derived from individual charge–discharge cycles,our top-performing model,based on data from just 40 cycles,achieves a mean absolute percentage error of 10.7%.展开更多
Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based...Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based on linear Wiener process is proposed,which is suitable for both monotonic and non-monotonic degraded systems with accurate results.Firstly,a unary linear Wiener degradation model is established,and the parameters of the model are estimated by using the expectation-maximization algorithm(EM).With the established model,the remaining useful life(RUL)of Ni Cd battery and its distribution are obtained.Then based on the unary Wiener process degradation model,the correlation between capacity and energy is analyzed through Copula function to build a binary linear Wiener degradation model,where its parameters are estimated using Markov Chain Monte Carlo(MCMC)method.Finally,according to the binary Wiener process model,the battery RUL and its distribution are acquired.The experimental results show that the binary linear Wiener degradation model based on capacity and energy possesses higher accuracy than the unary linear wiener process degradation model.展开更多
As an emergency and auxiliary power source for aircraft,lithium(Li)-ion batteries are important components of aerospace power systems.The Remaining Useful Life(RUL)prediction of Li-ion batteries is a key technology to...As an emergency and auxiliary power source for aircraft,lithium(Li)-ion batteries are important components of aerospace power systems.The Remaining Useful Life(RUL)prediction of Li-ion batteries is a key technology to ensure the reliable operation of aviation power systems.Particle Filter(PF)is an effective method to predict the RUL of Li-ion batteries because of its uncertainty representation and management ability.However,there are problems that particle weights cannot be updated in the prediction stage and particles degradation.To settle these issues,an innovative technique of F-distribution PF and Kernel Smoothing(FPFKS)algorithm is proposed.In the prediction stage,the weights of the particles are dynamically updated by the F kernel instead of being fixed all the time.Meanwhile,a first-order independent Markov capacity degradation model is established.Moreover,the kernel smoothing algorithm is integrated into PF,so that the variance of the parameters of capacity degradation model keeps invariant.Experiments based on NASA battery data sets show that FPFKS can be excellently applied to RUL prediction of Liion batteries.展开更多
Purpose-With the rapid development and stable operated application of lithium-ion batteries used in uninterruptible power supply(UPS),the prediction of remaining useful life(RUL)for lithium-ion battery played an impor...Purpose-With the rapid development and stable operated application of lithium-ion batteries used in uninterruptible power supply(UPS),the prediction of remaining useful life(RUL)for lithium-ion battery played an important role.More and more researchers paid more attentions on the reliability and safety for lithium-ion batteries based on prediction of RUL.The purpose of this paper is to predict the life of lithium-ion battery based on auto regression and particle filter method.Design/methodology/approach-In this paper,a simple and effective RUL prediction method based on the combination method of auto-regression(AR)time-series model and particle filter(PF)was proposed for lithiumion battery.The proposed method deformed the double-exponential empirical degradation model and reduced the number of parameters for such model to improve the efficiency of training.By using the PF algorithm to track the process of lithium-ion battery capacity decline and modified observations of the state space equations,the proposed PF t AR model fully considered the declined process of batteries to meet more accurate prediction of RUL.Findings-Experiments on CALCE dataset have fully compared the conventional PF algorithm and the AR t PF algorithm both on original exponential empirical degradation model and the deformed doubleexponential one.Experimental results have shown that the proposed PFtAR method improved the prediction accuracy,decreases the error rate and reduces the uncertainty ranges of RUL,which was more suitable for the deformed double-exponential empirical degradation model.Originality/value-In the running of UPS device based on lithium-ion battery,the proposed AR t PF combination algorithm will quickly,accurately and robustly predict the RUL of lithium-ion batteries,which had a strong application value in the stable operation of laboratory and other application scenarios.展开更多
Lithium-ion batteries have always been a focus of research on new energy vehicles,however,their internal reactions are complex,and problems such as battery aging and safety have not been fully understood.In view of th...Lithium-ion batteries have always been a focus of research on new energy vehicles,however,their internal reactions are complex,and problems such as battery aging and safety have not been fully understood.In view of the research and preliminary application of the digital twin in complex systems such as aerospace,we will have the opportunity to use the digital twin to solve the bottleneck of current battery research.Firstly,this paper arranges the development history,basic concepts and key technologies of the digital twin,and summarizes current research methods and challenges in battery modeling,state estimation,remaining useful life prediction,battery safety and control.Furthermore,based on digital twin we describe the solutions for battery digital modeling,real-time state estimation,dynamic charging control,dynamic thermal management,and dynamic equalization control in the intelligent battery management system.We also give development opportunities for digital twin in the battery field.Finally we summarize the development trends and challenges of smart battery management.展开更多
基金supported by Agency for Science,Technology and Research(A*STAR)under the Career Development Fund(C210112037)。
文摘Accurate estimation of the remaining useful life(RUL)of lithium-ion batteries is critical for their large-scale deployment as energy storage devices in electric vehicles and stationary storage.A fundamental understanding of the factors affecting RUL is crucial for accelerating battery technology development.However,it is very challenging to predict RUL accurately because of complex degradation mechanisms occurring within the batteries,as well as dynamic operating conditions in practical applications.Moreover,due to insignificant capacity degradation in early stages,early prediction of battery life with early cycle data can be more difficult.In this paper,we propose a hybrid deep learning model for early prediction of battery RUL.The proposed method can effectively combine handcrafted features with domain knowledge and latent features learned by deep networks to boost the performance of RUL early prediction.We also design a non-linear correlation-based method to select effective domain knowledge-based features.Moreover,a novel snapshot ensemble learning strategy is proposed to further enhance model generalization ability without increasing any additional training cost.Our experimental results show that the proposed method not only outperforms other approaches in the primary test set having a similar distribution as the training set,but also generalizes well to the secondary test set having a clearly different distribution with the training set.The PyTorch implementation of our proposed approach is available at https://github.com/batteryrul/battery_rul_early_prediction.
基金supported by First Automotive Work Group Research Institute and Jilin Province,China,under the key scientific and technological program grant number 20210301027GX.
文摘Accurate prediction of the remaining useful life(RUL)of lithium-ion batteries(LIBs)is pivotal for enhancing their operational efficiency and safety in diverse applications.Beyond operational advantages,precise RUL predictions can also expedite advancements in cell design and fast-charging methodologies,thereby reducing cycle testing durations.Despite artificial neural networks(ANNs)showing promise in this domain,determining the best-fit architecture across varied datasets and optimization approaches remains challenging.This study introduces a machine learning framework for systematically evaluating multiple ANN architectures.Using only 30%of a training dataset derived from 124 LIBs subjected to various charging regimes,an extensive evaluation is conducted across 7 ANN architectures.Each architecture is optimized in terms of hyperparameters using this framework,a process that spans 145 days on an NVIDIA GeForce RTX 4090 GPU.By optimizing each model to its best configuration,a fair and standardized basis for comparing their RUL predictions is established.The research also examines the impact of different cycling windows on predictive accuracy.Using a stratified partitioning technique underscores the significance of consistent dataset representation across subsets.Significantly,using only the features derived from individual charge–discharge cycles,our top-performing model,based on data from just 40 cycles,achieves a mean absolute percentage error of 10.7%.
基金Project(2017 YFB 1200801-12)supported by the National Natural Science Foundation of China。
文摘Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based on linear Wiener process is proposed,which is suitable for both monotonic and non-monotonic degraded systems with accurate results.Firstly,a unary linear Wiener degradation model is established,and the parameters of the model are estimated by using the expectation-maximization algorithm(EM).With the established model,the remaining useful life(RUL)of Ni Cd battery and its distribution are obtained.Then based on the unary Wiener process degradation model,the correlation between capacity and energy is analyzed through Copula function to build a binary linear Wiener degradation model,where its parameters are estimated using Markov Chain Monte Carlo(MCMC)method.Finally,according to the binary Wiener process model,the battery RUL and its distribution are acquired.The experimental results show that the binary linear Wiener degradation model based on capacity and energy possesses higher accuracy than the unary linear wiener process degradation model.
基金co-supported by Aeronautical Science Foundation of China (No. 20183352030)Fund Project of Equipment Pre-research Field of China (No. JZX7Y20190243016301)
文摘As an emergency and auxiliary power source for aircraft,lithium(Li)-ion batteries are important components of aerospace power systems.The Remaining Useful Life(RUL)prediction of Li-ion batteries is a key technology to ensure the reliable operation of aviation power systems.Particle Filter(PF)is an effective method to predict the RUL of Li-ion batteries because of its uncertainty representation and management ability.However,there are problems that particle weights cannot be updated in the prediction stage and particles degradation.To settle these issues,an innovative technique of F-distribution PF and Kernel Smoothing(FPFKS)algorithm is proposed.In the prediction stage,the weights of the particles are dynamically updated by the F kernel instead of being fixed all the time.Meanwhile,a first-order independent Markov capacity degradation model is established.Moreover,the kernel smoothing algorithm is integrated into PF,so that the variance of the parameters of capacity degradation model keeps invariant.Experiments based on NASA battery data sets show that FPFKS can be excellently applied to RUL prediction of Liion batteries.
基金This work was supported by the Fuzhou Polytechnic research foundation(No.FZYKJJJJC202001).Funding body played the roles in supporting the experiments.The author wants to thank the members of department of information and technology in Fuzhou Polytechnic for their proofreading comments.The authors are very grateful to the anonymous reviewers for their constructive comments which have helped significantly in revising this work.
文摘Purpose-With the rapid development and stable operated application of lithium-ion batteries used in uninterruptible power supply(UPS),the prediction of remaining useful life(RUL)for lithium-ion battery played an important role.More and more researchers paid more attentions on the reliability and safety for lithium-ion batteries based on prediction of RUL.The purpose of this paper is to predict the life of lithium-ion battery based on auto regression and particle filter method.Design/methodology/approach-In this paper,a simple and effective RUL prediction method based on the combination method of auto-regression(AR)time-series model and particle filter(PF)was proposed for lithiumion battery.The proposed method deformed the double-exponential empirical degradation model and reduced the number of parameters for such model to improve the efficiency of training.By using the PF algorithm to track the process of lithium-ion battery capacity decline and modified observations of the state space equations,the proposed PF t AR model fully considered the declined process of batteries to meet more accurate prediction of RUL.Findings-Experiments on CALCE dataset have fully compared the conventional PF algorithm and the AR t PF algorithm both on original exponential empirical degradation model and the deformed doubleexponential one.Experimental results have shown that the proposed PFtAR method improved the prediction accuracy,decreases the error rate and reduces the uncertainty ranges of RUL,which was more suitable for the deformed double-exponential empirical degradation model.Originality/value-In the running of UPS device based on lithium-ion battery,the proposed AR t PF combination algorithm will quickly,accurately and robustly predict the RUL of lithium-ion batteries,which had a strong application value in the stable operation of laboratory and other application scenarios.
文摘锂离子电池的剩余使用寿命(remaining useful life,RUL)是电池健康状态的关键指标,对其进行预测具有重要的现实意义。该工作将模糊信息粒化(fuzzy information granulation,FIG)技术与时间序列密集编码器模型(timeseries dense encoder,TiDE)相结合,提出了一种对锂离子电池的RUL进行区间预测的模型。首先将锂离子电池容量退化时间序列通过FIG技术转化为粒子序列信息,以此得到模糊信息粒子的上下界序列。其次,分别对上下界序列使用TiDE模型进行训练预测,从而得到区间预测的结果。实验结果表明,与基于支持向量回归(support vector regression,SVR)和长短期记忆网络(long short term memory network,LSTM)的区间预测模型以及不使用狐狸优化算法(fox-inspired optimization algorithm,FOA)优化的TiDE模型相比,该工作提出的基于FIG技术结合TiDE模型与FOA的区间预测方法在锂离子电池RUL预测性能上具有更高的可靠性。
基金Supported by National Natural Science Foundation of China(Grant No.51922006).
文摘Lithium-ion batteries have always been a focus of research on new energy vehicles,however,their internal reactions are complex,and problems such as battery aging and safety have not been fully understood.In view of the research and preliminary application of the digital twin in complex systems such as aerospace,we will have the opportunity to use the digital twin to solve the bottleneck of current battery research.Firstly,this paper arranges the development history,basic concepts and key technologies of the digital twin,and summarizes current research methods and challenges in battery modeling,state estimation,remaining useful life prediction,battery safety and control.Furthermore,based on digital twin we describe the solutions for battery digital modeling,real-time state estimation,dynamic charging control,dynamic thermal management,and dynamic equalization control in the intelligent battery management system.We also give development opportunities for digital twin in the battery field.Finally we summarize the development trends and challenges of smart battery management.