As nearly half of the incidents in enterprise security have been triggered by insiders,it is important to deploy a more intelligent defense system to assist enterprises in pinpointing and resolving the incidents cause...As nearly half of the incidents in enterprise security have been triggered by insiders,it is important to deploy a more intelligent defense system to assist enterprises in pinpointing and resolving the incidents caused by insiders or malicious software(malware)in real-time.Failing to do so may cause a serious loss of reputation as well as business.At the same time,modern network traffic has dynamic patterns,high complexity,and large volumes that make it more difficult to detect malware early.The ability to learn tasks sequentially is crucial to the development of artificial intelligence.Existing neurogenetic computation models with deep-learning techniques are able to detect complex patterns;however,the models have limitations,including catastrophic forgetfulness,and require intensive computational resources.As defense systems using deep-learning models require more time to learn new traffic patterns,they cannot perform fully online(on-the-fly)learning.Hence,an intelligent attack/malware detection system with on-the-fly learning capability is required.For this paper,a memory-prediction framework was adopted,and a simplified single cell assembled sequential hierarchical memory(s.SCASHM)model instead of the hierarchical temporal memory(HTM)model is proposed to speed up learning convergence to achieve onthe-fly learning.The s.SCASHM consists of a Single Neuronal Cell(SNC)model and a simplified Sequential Hierarchical Superset(SHS)platform.The s.SCASHMis implemented as the prediction engine of a user behavior analysis tool to detect insider attacks/anomalies.The experimental results show that the proposed memory model can predict users’traffic behavior with accuracy level ranging from 72%to 83%while performing on-the-fly learning.展开更多
In social networks,many complex factors affect the prediction of user forwarding behavior.This paper proposes an improved SVM prediction method for user forwarding behavior of hot topics to improve prediction accuracy...In social networks,many complex factors affect the prediction of user forwarding behavior.This paper proposes an improved SVM prediction method for user forwarding behavior of hot topics to improve prediction accuracy.Firstly,we consider that the improved Cuckoo Search algorithm can select the optimal penalty parameters and kernel function parameters to optimize the SVM and thus predict the user's forwarding behavior.Secondly,this paper considers the factors that affect the user forwarding behavior comprehensively from the user's own factors and external factors.Finally,based on the characteristics of the user's forwarding behavior changing over time,the time-slicing method is used to predict the trend of hot topics.Experiments show that the method can accurately predict the user's forwarding behavior and can sense the trend of hot topics.展开更多
As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain ...As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain interests or purchases. This generates a wealth of behavioral data, which, while invaluable to businesses, researchers, policymakers, and the cybersecurity sector, presents significant challenges due to its unstructured nature. Existing tools for analyzing this data often lack the capability to effectively retrieve and process it comprehensively. This paper addresses the need for an advanced analytical tool that ethically and legally collects and analyzes social media data and online activity logs, constructing detailed and structured user profiles. It reviews current solutions, highlights their limitations, and introduces a new approach, the Advanced Social Analyzer (ASAN), that bridges these gaps. The proposed solutions technical aspects, implementation, and evaluation are discussed, with results compared to existing methodologies. The paper concludes by suggesting future research directions to further enhance the utility and effectiveness of social media data analysis.展开更多
在当前的互联网营销环境中,多数模型尚未深入分析用户特征及用户行为的复杂性。对此,文章提出一种基于文本卷积神经网络(TextCNN)与多头注意力机制增强的xDeepFM(eXtreme Deep Factorization Machine)模型,即xDTCMAFM。首先,利用TextCN...在当前的互联网营销环境中,多数模型尚未深入分析用户特征及用户行为的复杂性。对此,文章提出一种基于文本卷积神经网络(TextCNN)与多头注意力机制增强的xDeepFM(eXtreme Deep Factorization Machine)模型,即xDTCMAFM。首先,利用TextCNN高效地从文本数据中提取关键特征;其次,通过多头注意力机制进行不同子空间的特征提取;最后,使用xDeepFM模型实现深度显隐特征的交叉融合。实验表明,在两个互联网营销活动数据集上,该模型的AUC值分别达到了69.09%和72.98%,表现出了较好的性能,与xDeepFM等流行模型及融合注意力机制的改进模型相比均有一定提升。展开更多
基金This research was funded by Scientific Research Deanship,Albaha University,under the Grant Number:[24/1440].
文摘As nearly half of the incidents in enterprise security have been triggered by insiders,it is important to deploy a more intelligent defense system to assist enterprises in pinpointing and resolving the incidents caused by insiders or malicious software(malware)in real-time.Failing to do so may cause a serious loss of reputation as well as business.At the same time,modern network traffic has dynamic patterns,high complexity,and large volumes that make it more difficult to detect malware early.The ability to learn tasks sequentially is crucial to the development of artificial intelligence.Existing neurogenetic computation models with deep-learning techniques are able to detect complex patterns;however,the models have limitations,including catastrophic forgetfulness,and require intensive computational resources.As defense systems using deep-learning models require more time to learn new traffic patterns,they cannot perform fully online(on-the-fly)learning.Hence,an intelligent attack/malware detection system with on-the-fly learning capability is required.For this paper,a memory-prediction framework was adopted,and a simplified single cell assembled sequential hierarchical memory(s.SCASHM)model instead of the hierarchical temporal memory(HTM)model is proposed to speed up learning convergence to achieve onthe-fly learning.The s.SCASHM consists of a Single Neuronal Cell(SNC)model and a simplified Sequential Hierarchical Superset(SHS)platform.The s.SCASHMis implemented as the prediction engine of a user behavior analysis tool to detect insider attacks/anomalies.The experimental results show that the proposed memory model can predict users’traffic behavior with accuracy level ranging from 72%to 83%while performing on-the-fly learning.
基金This paper is partially supported by the National Natural Science Foundation of China(Grant No.62006032,62072066)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K201900603,KJQN201900629)Chongqing Technology Innovation and Application Development Project(Grant No.cstc2020jscx-msxmX0150).
文摘In social networks,many complex factors affect the prediction of user forwarding behavior.This paper proposes an improved SVM prediction method for user forwarding behavior of hot topics to improve prediction accuracy.Firstly,we consider that the improved Cuckoo Search algorithm can select the optimal penalty parameters and kernel function parameters to optimize the SVM and thus predict the user's forwarding behavior.Secondly,this paper considers the factors that affect the user forwarding behavior comprehensively from the user's own factors and external factors.Finally,based on the characteristics of the user's forwarding behavior changing over time,the time-slicing method is used to predict the trend of hot topics.Experiments show that the method can accurately predict the user's forwarding behavior and can sense the trend of hot topics.
文摘As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain interests or purchases. This generates a wealth of behavioral data, which, while invaluable to businesses, researchers, policymakers, and the cybersecurity sector, presents significant challenges due to its unstructured nature. Existing tools for analyzing this data often lack the capability to effectively retrieve and process it comprehensively. This paper addresses the need for an advanced analytical tool that ethically and legally collects and analyzes social media data and online activity logs, constructing detailed and structured user profiles. It reviews current solutions, highlights their limitations, and introduces a new approach, the Advanced Social Analyzer (ASAN), that bridges these gaps. The proposed solutions technical aspects, implementation, and evaluation are discussed, with results compared to existing methodologies. The paper concludes by suggesting future research directions to further enhance the utility and effectiveness of social media data analysis.
文摘在当前的互联网营销环境中,多数模型尚未深入分析用户特征及用户行为的复杂性。对此,文章提出一种基于文本卷积神经网络(TextCNN)与多头注意力机制增强的xDeepFM(eXtreme Deep Factorization Machine)模型,即xDTCMAFM。首先,利用TextCNN高效地从文本数据中提取关键特征;其次,通过多头注意力机制进行不同子空间的特征提取;最后,使用xDeepFM模型实现深度显隐特征的交叉融合。实验表明,在两个互联网营销活动数据集上,该模型的AUC值分别达到了69.09%和72.98%,表现出了较好的性能,与xDeepFM等流行模型及融合注意力机制的改进模型相比均有一定提升。