Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wol...Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wolf optimizer(EGWO)-n-support vector regression(n-SVR)method.High-embankment field measurements were preprocessed using the joint denoising technique,which in-cludes complete ensemble empirical mode decomposition,singular value decomposition,and wavelet packet transform.Furthermore,high-embankment settlements were predicted using the EGWO-n-SVR method.In this method,the standard gray wolf optimizer(GWO)was improved to obtain the EGWO to better tune the n-SVR model hyperparameters.The proposed NHM was then tested in two case studies.Finally,the influences of the data division ratio and kernel function on the EGWO-n-SVR forecasting performance and prediction efficiency were investigated.The results indicate that the NHM suppresses noise and restores details in high-embankment field measurements.Simultaneously,the NHM out-performs other alternative prediction methods in prediction accuracy and robustness.This demonstrates that the proposed NHM is effective in predicting high-embankment settlements with noisy field mea-surements.Moreover,the appropriate data division ratio and kernel function for EGWO-n-SVR are 7:3 and radial basis function,respectively.展开更多
The unique structure and complex deformation characteristics of concrete face rockfill dams(CFRDs)create safety monitoring challenges.This study developed an improved random forest(IRF)model for dam health monitoring ...The unique structure and complex deformation characteristics of concrete face rockfill dams(CFRDs)create safety monitoring challenges.This study developed an improved random forest(IRF)model for dam health monitoring modeling by replacing the decision tree in the random forest(RF)model with a novel M5'model tree algorithm.The factors affecting dam deformation were preliminarily selected using the statistical model,and the grey relational degree theory was utilized to reduce the dimensions of model input variables.Finally,a deformation prediction model of CFRDs was established using the IRF model.The ten-fold cross-validation method was used to quantitatively analyze the parameters affecting the IRF algorithm.The performance of the established model was verified using data from three specific measurement points on the Jishixia dam and compared with other dam deformation prediction models.At point ES-10,the performance evaluation indices of the IRF model were superior to those of the M5'model tree and RF models and the classical support vector regression(SVR)and back propagation(BP)neural network models,indicating the satisfactory performance of the IRF model.The IRF model also outperformed the SVR and BP models in settlement prediction at points ES2-8 and ES4-10,demonstrating its strong anti-interference and generalization capabilities.This study has developed a novel method for forecasting and analyzing dam settlements with practical significance.Moreover,the established IRF model can also provide guidance for modeling health monitoring of other structures.展开更多
Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid ar...Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations.展开更多
Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th...Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.展开更多
The prediction of embankment settlement is a critically important issue for the serviceability of subgrade projects,especially the post-construction settlement.A number of methods have been proposed to predict embankm...The prediction of embankment settlement is a critically important issue for the serviceability of subgrade projects,especially the post-construction settlement.A number of methods have been proposed to predict embankment settlement;however,all of these methods are based on a parameter,i.e.the initial time point.The difference of the initial time point determined by different designers can de?nitely induce errors in prediction of embankment settlement.This paper proposed a concept named"potential settlement"and a simpli?ed method based on the in situ data.The key parameter"b"in the proposed method was veri?ed using theoretical method and?eld data.Finally,an example was used to demonstrate the advantages of the proposed method by comparing with other methods and the observation data.展开更多
Post-construction settlement has gained increasing attention because it frequently causes engineering problems. A combined model is a commonly used prediction model that overcomes the difficulty of a single model( i. ...Post-construction settlement has gained increasing attention because it frequently causes engineering problems. A combined model is a commonly used prediction model that overcomes the difficulty of a single model( i. e., cannot reflect various regulations of settlement at some stages or the entire process). In this study,the correlation coefficient,maximum error values,and other values were obtained according to the fitting and predicted results of a single model. The coefficient of variation was then introduced to determine the weight of each model forming the combination. The proposed model was used to fit and predict for settlement and overcome the issue of utilizing a single model while determining the weight. The fitting predictive effect was also analyzed using the settlement fitting precision results. The fitting precision of optimizing the combination model is high. The predicted data of the post-construction settlement are closer to the calculated value of the settlement monitoring data. Moreover,the proposed model has good practicability,does not require the interval data of settlement,and restricts the model number. Thus,this model can be applied in the engineering field.展开更多
To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitori...To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits.展开更多
This paper introduces a slurry suspension settlement prediction model for cohesive sediment in a still water environment. With no sediment input and a still water environment condition, control forces between settling...This paper introduces a slurry suspension settlement prediction model for cohesive sediment in a still water environment. With no sediment input and a still water environment condition, control forces between settling particles are significantly different in the process of sedimentation rate attenuation, and the settlement process includes the free sedimentation stage, the log-linear attenuation stage, and the stable consolidation stage according to sedimentation rate attenuation. Settlement equations for sedimentation height and time were established based on sedimentation rate attenuation properties of different sedimentation stages. Finally, a slurry suspension settlement prediction model based on slurry parameters was set up with a foundation being that the model parameters were determined by the basic parameters of slurry. The results of the settlement prediction model show good agreement with those of the settlement column experiment and reflect the main characteristics of cohesive sediment. The model can be applied to the prediction of cohesive soil settlement in still water environments.展开更多
This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of ...This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnelsegments. It investigates the impact of shield construction on surface settlement, mechanical characteristics ofnearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizingthe Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using theABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force,and cutterhead torque. Its accuracy is validated against field monitoring data from engineering projects. Simulationswere conducted to analyze ground settlement and mechanical changes in adjacent rock and segments acrossfive soil layers. The results indicate that disturbances are most significant near the excavation zone of the shieldmachine, with a prominent settlement trough forming and stabilizing around 2.0–3.0 D from the excavation. Theexcavation face compresses the soil, inducing lateral expansion. As grouting pressure decreases, the segmentexperiences upward buoyancy. In mixed strata, softer layers witness increased cutting, intensifying disturbancesbut reducing segment floatation. These findings offer valuable insights for predicting settlements, ensuring segmentand rock safety, and optimizing tunneling parameters.展开更多
Based on an example of a project in Tangshan, the high-rise buildings are built in karst area and mined out affected area which is treated by high pressure grouting, and foundation is adopted the form of pile raft fou...Based on an example of a project in Tangshan, the high-rise buildings are built in karst area and mined out affected area which is treated by high pressure grouting, and foundation is adopted the form of pile raft foundation. By long-term measured settlement of high-rise buildings, It is found that foundation settlement is linear increase with the increase of load before the building is roof-sealed, and the settlement increases slowly after the building is roof-sealed, and the curve tends to converge, and the foundation consolidation is completed. The settlement of the foundation is about 80% - 84% of the total settlement before the building is roof-sealed.Three layer BP neural network model is used to predict the settlement in the karst area and mined affected area.Compared with the measured data, the relative difference of the prediction is 0.91% - 2.08% in the karst area, and is 0.95% - 2.11% in mined affected area. The prediction results of high precision can meet the engineering requirements.展开更多
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant No.51808462)the Natural Science Foundation Project of Sichuan Province,China(Grant No.2023NSFSC0346)the Science and Technology Project of Inner Mongolia Transportation Department,China(Grant No.NJ-2022-14).
文摘Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wolf optimizer(EGWO)-n-support vector regression(n-SVR)method.High-embankment field measurements were preprocessed using the joint denoising technique,which in-cludes complete ensemble empirical mode decomposition,singular value decomposition,and wavelet packet transform.Furthermore,high-embankment settlements were predicted using the EGWO-n-SVR method.In this method,the standard gray wolf optimizer(GWO)was improved to obtain the EGWO to better tune the n-SVR model hyperparameters.The proposed NHM was then tested in two case studies.Finally,the influences of the data division ratio and kernel function on the EGWO-n-SVR forecasting performance and prediction efficiency were investigated.The results indicate that the NHM suppresses noise and restores details in high-embankment field measurements.Simultaneously,the NHM out-performs other alternative prediction methods in prediction accuracy and robustness.This demonstrates that the proposed NHM is effective in predicting high-embankment settlements with noisy field mea-surements.Moreover,the appropriate data division ratio and kernel function for EGWO-n-SVR are 7:3 and radial basis function,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.51979224)the China National Funds for Distinguished Young Scientists(Grant No.52125904).
文摘The unique structure and complex deformation characteristics of concrete face rockfill dams(CFRDs)create safety monitoring challenges.This study developed an improved random forest(IRF)model for dam health monitoring modeling by replacing the decision tree in the random forest(RF)model with a novel M5'model tree algorithm.The factors affecting dam deformation were preliminarily selected using the statistical model,and the grey relational degree theory was utilized to reduce the dimensions of model input variables.Finally,a deformation prediction model of CFRDs was established using the IRF model.The ten-fold cross-validation method was used to quantitatively analyze the parameters affecting the IRF algorithm.The performance of the established model was verified using data from three specific measurement points on the Jishixia dam and compared with other dam deformation prediction models.At point ES-10,the performance evaluation indices of the IRF model were superior to those of the M5'model tree and RF models and the classical support vector regression(SVR)and back propagation(BP)neural network models,indicating the satisfactory performance of the IRF model.The IRF model also outperformed the SVR and BP models in settlement prediction at points ES2-8 and ES4-10,demonstrating its strong anti-interference and generalization capabilities.This study has developed a novel method for forecasting and analyzing dam settlements with practical significance.Moreover,the established IRF model can also provide guidance for modeling health monitoring of other structures.
文摘Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations.
基金Projects(2009G008-B,2010G018-E-3) supported by Key Projects of China Railway Ministry Science and Technology Research and Development ProgramProject(CX2013B076) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.
基金a part of the project "Universities Natural Science Research Project in Anhui Province" (KJ2011Z375)supported by Department of Education of Anhui Province
文摘The prediction of embankment settlement is a critically important issue for the serviceability of subgrade projects,especially the post-construction settlement.A number of methods have been proposed to predict embankment settlement;however,all of these methods are based on a parameter,i.e.the initial time point.The difference of the initial time point determined by different designers can de?nitely induce errors in prediction of embankment settlement.This paper proposed a concept named"potential settlement"and a simpli?ed method based on the in situ data.The key parameter"b"in the proposed method was veri?ed using theoretical method and?eld data.Finally,an example was used to demonstrate the advantages of the proposed method by comparing with other methods and the observation data.
基金National Natural Science Foundations of China(Nos.41172236,41402243,and 40911120044)Basic Research Project of Jilin University,China(No.450060491448)
文摘Post-construction settlement has gained increasing attention because it frequently causes engineering problems. A combined model is a commonly used prediction model that overcomes the difficulty of a single model( i. e., cannot reflect various regulations of settlement at some stages or the entire process). In this study,the correlation coefficient,maximum error values,and other values were obtained according to the fitting and predicted results of a single model. The coefficient of variation was then introduced to determine the weight of each model forming the combination. The proposed model was used to fit and predict for settlement and overcome the issue of utilizing a single model while determining the weight. The fitting predictive effect was also analyzed using the settlement fitting precision results. The fitting precision of optimizing the combination model is high. The predicted data of the post-construction settlement are closer to the calculated value of the settlement monitoring data. Moreover,the proposed model has good practicability,does not require the interval data of settlement,and restricts the model number. Thus,this model can be applied in the engineering field.
基金Project 50279005 supported by the National Natural Science Foundation of China
文摘To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits.
基金supported by the Research Funds for the Central Universities (Grant No. 2009B13514)the Doctoral Fund of the Ministry of Education of China (Grant No. 20100094110002)
文摘This paper introduces a slurry suspension settlement prediction model for cohesive sediment in a still water environment. With no sediment input and a still water environment condition, control forces between settling particles are significantly different in the process of sedimentation rate attenuation, and the settlement process includes the free sedimentation stage, the log-linear attenuation stage, and the stable consolidation stage according to sedimentation rate attenuation. Settlement equations for sedimentation height and time were established based on sedimentation rate attenuation properties of different sedimentation stages. Finally, a slurry suspension settlement prediction model based on slurry parameters was set up with a foundation being that the model parameters were determined by the basic parameters of slurry. The results of the settlement prediction model show good agreement with those of the settlement column experiment and reflect the main characteristics of cohesive sediment. The model can be applied to the prediction of cohesive soil settlement in still water environments.
文摘This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this constructionmethod impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnelsegments. It investigates the impact of shield construction on surface settlement, mechanical characteristics ofnearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizingthe Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using theABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force,and cutterhead torque. Its accuracy is validated against field monitoring data from engineering projects. Simulationswere conducted to analyze ground settlement and mechanical changes in adjacent rock and segments acrossfive soil layers. The results indicate that disturbances are most significant near the excavation zone of the shieldmachine, with a prominent settlement trough forming and stabilizing around 2.0–3.0 D from the excavation. Theexcavation face compresses the soil, inducing lateral expansion. As grouting pressure decreases, the segmentexperiences upward buoyancy. In mixed strata, softer layers witness increased cutting, intensifying disturbancesbut reducing segment floatation. These findings offer valuable insights for predicting settlements, ensuring segmentand rock safety, and optimizing tunneling parameters.
文摘Based on an example of a project in Tangshan, the high-rise buildings are built in karst area and mined out affected area which is treated by high pressure grouting, and foundation is adopted the form of pile raft foundation. By long-term measured settlement of high-rise buildings, It is found that foundation settlement is linear increase with the increase of load before the building is roof-sealed, and the settlement increases slowly after the building is roof-sealed, and the curve tends to converge, and the foundation consolidation is completed. The settlement of the foundation is about 80% - 84% of the total settlement before the building is roof-sealed.Three layer BP neural network model is used to predict the settlement in the karst area and mined affected area.Compared with the measured data, the relative difference of the prediction is 0.91% - 2.08% in the karst area, and is 0.95% - 2.11% in mined affected area. The prediction results of high precision can meet the engineering requirements.