针对高效视频编码(HEVC)帧内预测过程中的高计算复杂度问题,提出一种基于纹理特征的预测模式选择和编码单元划分的快速帧内预测算法。利用每一深度层纹理方向强度判断编码单元是否需要进行分割,并且减少候选模式数量。首先,在每一深度...针对高效视频编码(HEVC)帧内预测过程中的高计算复杂度问题,提出一种基于纹理特征的预测模式选择和编码单元划分的快速帧内预测算法。利用每一深度层纹理方向强度判断编码单元是否需要进行分割,并且减少候选模式数量。首先,在每一深度层编码单元上结合像素方差,以像素点为单位计算相应的纹理方向强度,确定其纹理复杂度并结合阈值策略预测最终划分深度;其次,比较垂直和水平方向强度关系及统计预测候选模式概率分布,以减少预测模式数量,确定最优候选模式子集,进一步降低编码复杂度。所提算法与平台HM15.0相比,编码时间平均节省51.997%,BDPSNR(Bjontegaard Delta Peak Signal-to-Noise Rate)仅降低0.059 d B,BDBR(Bjontegaard Delta Bit Rate)仅上升了1.018%。实验数据表明,在保证信噪比和比特率基本不变的同时,所提算法能有效降低编码复杂度,利于HEVC的实时视频应用。展开更多
文摘针对高效视频编码(HEVC)帧内预测过程中的高计算复杂度问题,提出一种基于纹理特征的预测模式选择和编码单元划分的快速帧内预测算法。利用每一深度层纹理方向强度判断编码单元是否需要进行分割,并且减少候选模式数量。首先,在每一深度层编码单元上结合像素方差,以像素点为单位计算相应的纹理方向强度,确定其纹理复杂度并结合阈值策略预测最终划分深度;其次,比较垂直和水平方向强度关系及统计预测候选模式概率分布,以减少预测模式数量,确定最优候选模式子集,进一步降低编码复杂度。所提算法与平台HM15.0相比,编码时间平均节省51.997%,BDPSNR(Bjontegaard Delta Peak Signal-to-Noise Rate)仅降低0.059 d B,BDBR(Bjontegaard Delta Bit Rate)仅上升了1.018%。实验数据表明,在保证信噪比和比特率基本不变的同时,所提算法能有效降低编码复杂度,利于HEVC的实时视频应用。