BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly underst...BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly understood.AIM To determine the possible mechanism affecting HCC metastasis and provide a possible theoretical basis for HCC treatment.METHODS The candidate molecule lecithin-cholesterol acyltransferase(LCAT)was screened by gene microarray and bioinformatics analysis.The expression levels of LCAT in clinical cohort samples was detected by quantitative realtime polymerase chain reaction and western blotting.The proliferation,migration,invasion and tumor-forming ability were measured by Cell Counting Kit-8,Transwell cell migration,invasion,and clonal formation assays,respectively.Tumor formation was detected in nude mice after LCAT gene knockdown or overexpression.The immunohistochemistry for Ki67,E-cadherin,N-cadherin,matrix metalloproteinase 9 and vascular endothelial growth factor were performed in liver tissues to assess the effect of LCAT on HCC.Gene set enrichment analysis(GSEA)on various gene signatures were analyzed with GSEA version 3.0.Three machine-learning algorithms(random forest,support vector machine,and logistic regression)were applied to predict HCC metastasis in The Cancer Genome Atlas and GEO databases.RESULTS LCAT was identified as a novel gene relating to HCC metastasis by using gene microarray in HCC tissues.LCAT was significantly downregulated in HCC tissues,which is correlated with recurrence,metastasis and poor outcome of HCC patients.Functional analysis indicated that LCAT inhibited HCC cell proliferation,migration and invasion both in vitro and in vivo.Clinicopathological data showed that LCAT was negatively associated with HCC size and metastasis(HCC size≤3 cm vs 3-9 cm,P<0.001;3-9 cm vs>9 cm,P<0.01;metastatic-free HCC vs extrahepatic metastatic HCC,P<0.05).LCAT suppressed the growth,migration and invasion of HCC cell lines via PI3K/AKT/mTOR signaling.Our results indicated that the logistic regression model based on LCAT,TNM stage and the serum level of α-fetoprotein in HCC patients could effectively predict high metastatic risk HCC patients.CONCLUSION LCAT is downregulated at translational and protein levels in HCC and might inhibit tumor metastasis via attenuating PI3K/AKT/mTOR signaling.LCAT is a prognostic marker and potential therapeutic target for HCC.展开更多
This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatl...This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatly. The effectiveness of the controller is demonstrated by the simulation result.展开更多
The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has a...The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has acquired extensive applications in various industries. In this study, MPC is applied to the process for separating ethanol, n-propanol, and n-butanol ternary mixture in a fully thermally coupled DWC. Both composition control and tem- perature inferent/al control are considered. The multiobjective genetic algor/thm function "gamult/obj" in Matlab is used for the weight tuning of MPC. Comparisons are made between the control performances of MPC and PI strategies. Simulation results show that although both MPC and PI schemes can stabilize the DWC in case of feed disturbances, MPC generally behaves better than the PI strategy for both composition control and tempera- ture inferential control, resulting in a more stable and superior performance with lower values of integral of squared error (ISE).展开更多
The variation of plant dead-time deeply a?ects the stability of the predictive PI controlsystem. It is important for designing and applying the PPI controller to calculate the delay margin.A criterion of stability for...The variation of plant dead-time deeply a?ects the stability of the predictive PI controlsystem. It is important for designing and applying the PPI controller to calculate the delay margin.A criterion of stability for the PPI system and the quantitive relationship among the delay margin,the time constant of the closed-loop system, and the dead-time of the model are given. A graphicalgorithm to compute the delay margin is also developed. The phenomenon that there exist morethan one stability delay zones is discussed. The algorithm is shown to be precise by some simulations.展开更多
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g...Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.展开更多
Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
By extending the system's state variables,a novel predictive functional controller has been developed.The structure of this controller is similar to that of classical proportional integral(PI)optimal controller an...By extending the system's state variables,a novel predictive functional controller has been developed.The structure of this controller is similar to that of classical proportional integral(PI)optimal controller and in-cludes a control block that can perform a feed-forward control of future P-step set points.It considers both the state variables and the output errors in its cost function,which results in enhanced control performance compared with traditional state space predictive functional control(TSSPFC)methods that consider only the predictive output er-rors.The predictive functional controller(PFC)has been compared with TSSPFC in terms of tracking ability,dis-turbance rejection,and also based on its application to heavy oil coking equipment.The results obtained show the effectiveness of the controller.展开更多
Based on a robotic telesurgery system whose function is to liberate doctor from X-ray radiation, a robotic tele-drill system is constructed. The system is in client/server structure. Client part includes main control ...Based on a robotic telesurgery system whose function is to liberate doctor from X-ray radiation, a robotic tele-drill system is constructed. The system is in client/server structure. Client part includes main control interface, video-audio interface and predictive display interface. Server part includes robot control server and video, audio server. For applying to teleoperation, a virtual reality environment of the system developed by using Java, Java 3D, Pro/E, etc. is established. The geometry and kinematics model of serial robot MOTOMAN sv3x, parallel robot, C-type arm and X-ray machine, surgery bed and its work environment are fulfilled in it. Simulation engine and its simulation syntax are finished, which made the environment controllable. This environment is used as predictive display interface in the telerobotics in order to tackling the problem in visualization feedback as ambiguous or time delay. Experiments that verified feasibility of the system have been done.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
Cancer is one of the most dangerous diseaseswith highmortality.One of the principal treatments is radiotherapy by using radiation beams to destroy cancer cells and this workflow requires a lot of experience and skill ...Cancer is one of the most dangerous diseaseswith highmortality.One of the principal treatments is radiotherapy by using radiation beams to destroy cancer cells and this workflow requires a lot of experience and skill from doctors and technicians.In our study,we focused on the 3D dose prediction problem in radiotherapy by applying the deeplearning approach to computed tomography(CT)images of cancer patients.Medical image data has more complex characteristics than normal image data,and this research aims to explore the effectiveness of data preprocessing and augmentation in the context of the 3D dose prediction problem.We proposed four strategies to clarify our hypothesis in different aspects of applying data preprocessing and augmentation.In strategies,we trained our custom convolutional neural network model which has a structure inspired by the U-net,and residual blocks were also applied to the architecture.The output of the network is added with a rectified linear unit(Re-Lu)function for each pixel to ensure there are no negative values,which are absurd with radiation doses.Our experiments were conducted on the dataset of the Open Knowledge-Based Planning Challenge which was collected from head and neck cancer patients treatedwith radiation therapy.The results of four strategies showthat our hypothesis is rational by evaluating metrics in terms of the Dose-score and the Dose-volume histogram score(DVH-score).In the best training cases,the Dose-score is 3.08 and the DVH-score is 1.78.In addition,we also conducted a comparison with the results of another study in the same context of using the loss function.展开更多
The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality es...The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.展开更多
We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an ...We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an on-load tapchanger(OLTC) and transmission lines. The system power factor(PF) regulation and reactive power dispatching are indispensable to improve power quality. Our control method uses predictive weather and load data to decide engaging or tripping the shunt capacitor, or reactive power injection by the photovoltaic-inverter system, ultimately to keep the system PF in a good range. From the perspective of economics, the economical model is considered as a decision maker in our predictive data control method.Capacitor-only control strategy is a common photovoltaic(PV)regulation method, which is treated as a baseline case. Simulations with GridLAB-D on profiled loads and residential loads have been carried out. The comparison results with baseline control strategy and our predictive data control method show the appreciable economical benefit of our method.展开更多
基金Supported by the National Natural Science Foundation of China,No.92159305National Key R&D Program of China,No.2023YFC2308104.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a major cause of cancer mortality worldwide,and metastasis is the main cause of early recurrence and poor prognosis.However,the mechanism of metastasis remains poorly understood.AIM To determine the possible mechanism affecting HCC metastasis and provide a possible theoretical basis for HCC treatment.METHODS The candidate molecule lecithin-cholesterol acyltransferase(LCAT)was screened by gene microarray and bioinformatics analysis.The expression levels of LCAT in clinical cohort samples was detected by quantitative realtime polymerase chain reaction and western blotting.The proliferation,migration,invasion and tumor-forming ability were measured by Cell Counting Kit-8,Transwell cell migration,invasion,and clonal formation assays,respectively.Tumor formation was detected in nude mice after LCAT gene knockdown or overexpression.The immunohistochemistry for Ki67,E-cadherin,N-cadherin,matrix metalloproteinase 9 and vascular endothelial growth factor were performed in liver tissues to assess the effect of LCAT on HCC.Gene set enrichment analysis(GSEA)on various gene signatures were analyzed with GSEA version 3.0.Three machine-learning algorithms(random forest,support vector machine,and logistic regression)were applied to predict HCC metastasis in The Cancer Genome Atlas and GEO databases.RESULTS LCAT was identified as a novel gene relating to HCC metastasis by using gene microarray in HCC tissues.LCAT was significantly downregulated in HCC tissues,which is correlated with recurrence,metastasis and poor outcome of HCC patients.Functional analysis indicated that LCAT inhibited HCC cell proliferation,migration and invasion both in vitro and in vivo.Clinicopathological data showed that LCAT was negatively associated with HCC size and metastasis(HCC size≤3 cm vs 3-9 cm,P<0.001;3-9 cm vs>9 cm,P<0.01;metastatic-free HCC vs extrahepatic metastatic HCC,P<0.05).LCAT suppressed the growth,migration and invasion of HCC cell lines via PI3K/AKT/mTOR signaling.Our results indicated that the logistic regression model based on LCAT,TNM stage and the serum level of α-fetoprotein in HCC patients could effectively predict high metastatic risk HCC patients.CONCLUSION LCAT is downregulated at translational and protein levels in HCC and might inhibit tumor metastasis via attenuating PI3K/AKT/mTOR signaling.LCAT is a prognostic marker and potential therapeutic target for HCC.
文摘This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatly. The effectiveness of the controller is demonstrated by the simulation result.
基金Supported by the National Natural Science Foundation of China(21676299,21476261and 21606255)
文摘The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has acquired extensive applications in various industries. In this study, MPC is applied to the process for separating ethanol, n-propanol, and n-butanol ternary mixture in a fully thermally coupled DWC. Both composition control and tem- perature inferent/al control are considered. The multiobjective genetic algor/thm function "gamult/obj" in Matlab is used for the weight tuning of MPC. Comparisons are made between the control performances of MPC and PI strategies. Simulation results show that although both MPC and PI schemes can stabilize the DWC in case of feed disturbances, MPC generally behaves better than the PI strategy for both composition control and tempera- ture inferential control, resulting in a more stable and superior performance with lower values of integral of squared error (ISE).
文摘The variation of plant dead-time deeply a?ects the stability of the predictive PI controlsystem. It is important for designing and applying the PPI controller to calculate the delay margin.A criterion of stability for the PPI system and the quantitive relationship among the delay margin,the time constant of the closed-loop system, and the dead-time of the model are given. A graphicalgorithm to compute the delay margin is also developed. The phenomenon that there exist morethan one stability delay zones is discussed. The algorithm is shown to be precise by some simulations.
基金funded by the National Natural Science Foundation of China(General Program:No.52074314,No.U19B6003-05)National Key Research and Development Program of China(2019YFA0708303-05)。
文摘Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
基金Supported by the National Creative Research Groups Science Foundation of China (NCRGSFC 60421002)the National High Technology Research and Development Program of China (863 Program,2006AA04Z182).
文摘By extending the system's state variables,a novel predictive functional controller has been developed.The structure of this controller is similar to that of classical proportional integral(PI)optimal controller and in-cludes a control block that can perform a feed-forward control of future P-step set points.It considers both the state variables and the output errors in its cost function,which results in enhanced control performance compared with traditional state space predictive functional control(TSSPFC)methods that consider only the predictive output er-rors.The predictive functional controller(PFC)has been compared with TSSPFC in terms of tracking ability,dis-turbance rejection,and also based on its application to heavy oil coking equipment.The results obtained show the effectiveness of the controller.
文摘Based on a robotic telesurgery system whose function is to liberate doctor from X-ray radiation, a robotic tele-drill system is constructed. The system is in client/server structure. Client part includes main control interface, video-audio interface and predictive display interface. Server part includes robot control server and video, audio server. For applying to teleoperation, a virtual reality environment of the system developed by using Java, Java 3D, Pro/E, etc. is established. The geometry and kinematics model of serial robot MOTOMAN sv3x, parallel robot, C-type arm and X-ray machine, surgery bed and its work environment are fulfilled in it. Simulation engine and its simulation syntax are finished, which made the environment controllable. This environment is used as predictive display interface in the telerobotics in order to tackling the problem in visualization feedback as ambiguous or time delay. Experiments that verified feasibility of the system have been done.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
基金sponsored by the Institute of Information Technology(Vietnam Academy of Science and Technology)with Project Code“CS24.01”.
文摘Cancer is one of the most dangerous diseaseswith highmortality.One of the principal treatments is radiotherapy by using radiation beams to destroy cancer cells and this workflow requires a lot of experience and skill from doctors and technicians.In our study,we focused on the 3D dose prediction problem in radiotherapy by applying the deeplearning approach to computed tomography(CT)images of cancer patients.Medical image data has more complex characteristics than normal image data,and this research aims to explore the effectiveness of data preprocessing and augmentation in the context of the 3D dose prediction problem.We proposed four strategies to clarify our hypothesis in different aspects of applying data preprocessing and augmentation.In strategies,we trained our custom convolutional neural network model which has a structure inspired by the U-net,and residual blocks were also applied to the architecture.The output of the network is added with a rectified linear unit(Re-Lu)function for each pixel to ensure there are no negative values,which are absurd with radiation doses.Our experiments were conducted on the dataset of the Open Knowledge-Based Planning Challenge which was collected from head and neck cancer patients treatedwith radiation therapy.The results of four strategies showthat our hypothesis is rational by evaluating metrics in terms of the Dose-score and the Dose-volume histogram score(DVH-score).In the best training cases,the Dose-score is 3.08 and the DVH-score is 1.78.In addition,we also conducted a comparison with the results of another study in the same context of using the loss function.
文摘The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.
文摘We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an on-load tapchanger(OLTC) and transmission lines. The system power factor(PF) regulation and reactive power dispatching are indispensable to improve power quality. Our control method uses predictive weather and load data to decide engaging or tripping the shunt capacitor, or reactive power injection by the photovoltaic-inverter system, ultimately to keep the system PF in a good range. From the perspective of economics, the economical model is considered as a decision maker in our predictive data control method.Capacitor-only control strategy is a common photovoltaic(PV)regulation method, which is treated as a baseline case. Simulations with GridLAB-D on profiled loads and residential loads have been carried out. The comparison results with baseline control strategy and our predictive data control method show the appreciable economical benefit of our method.