We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc...We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.展开更多
Cascade control is one of the most popular structures for process control as it is a special architecture for dealing with disturbances. However, the drawbacks of cascade control are obvious that primary controller an...Cascade control is one of the most popular structures for process control as it is a special architecture for dealing with disturbances. However, the drawbacks of cascade control are obvious that primary controller and secondary controller should be tuned together, which influences each other. In this paper, a new Adaptive Cascade Generalized Predictive Controller (ACGPC) is introduced. ACGPC is a method issued from GPC and the inner and outer controllers of a cascade system are replaced by one cascade generalized predictive controller, where both loops model are updated by Recursive Least Squares method. Compared with existing methods, the new method is simpler and yet more effective. It can be directly integrated into commercially available industrial auto-tuning systems. Some examples are given to illustrate the effectiveness and robustness of the proposed method.展开更多
A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the d...A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the distributed control structure, online optimization of the cascade system was composed of several cascaded agents that can cooperate and exchange information via network communication. By iterating on modified distributed linear optimal control problems on the basis of estimating parameters at every iteration the correct optimal control action of the nonlinear model predictive control problem of the cascade system could be obtained, assuming that the algorithm was convergent. This approach avoids solving the complex nonlinear optimization problem and significantly reduces the computational burden. The simulation results of the fossil fuel power unit are illustrated to verify the effectiveness and practicability of the proposed algorithm.展开更多
Model predictive controllers(MPC)with the two-loop scheme are successful approaches practically and can be classified into two main categories,tube-based MPC and MPCbased reference governors(RG).In this paper,an enhan...Model predictive controllers(MPC)with the two-loop scheme are successful approaches practically and can be classified into two main categories,tube-based MPC and MPCbased reference governors(RG).In this paper,an enhanced twoloop MPC design is proposed for a pre-stabilized system with the bounded uncertainty subject to the input and state constraints.The proposed method offers less conservatism than the tube-based MPC methods by enlarging the restricted input constraint.Contrary to the MPC-based RGs,the investigated method improves tracking performance of the pre-stabilized system while satisfying the constraints.Additionally,the robust global asymptotic stability of the closed-loop system is guaranteed in a novel procedure with terminal constraint relaxation.Simulation of the proposed method on a servo system shows its effectiveness in comparison to the others.展开更多
A new decentralized closcd-loop identification and predictive controller design method for a kind of cascade processes composed of several sub-processes is studied. This kind of cascade processcs has the characteristi...A new decentralized closcd-loop identification and predictive controller design method for a kind of cascade processes composed of several sub-processes is studied. This kind of cascade processcs has the characteristies of one-way connection. The process is divided into several two-input-two-output (TITO) sub-systems. The parameters of the first-order plus dead-time models for the transfer function matrices can be obtained using least squares method. Hence a distributed model predictive contn,ller is designed based on the coupling models of each sub-process. Simulation results on the temperature control of a reheating furnace are given to show the efficiency of the algorithm.展开更多
An adaptive predictive pinning control is proposed to suppress the cascade in coupled map lattices (CMLs).Two monitoring strategies are applied:(1) A specific fraction of nodes with the highest degree or betweenness a...An adaptive predictive pinning control is proposed to suppress the cascade in coupled map lattices (CMLs).Two monitoring strategies are applied:(1) A specific fraction of nodes with the highest degree or betweenness are chosen to constitute the set of monitored nodes;(2) During the cascade,an adaptive pinning control is implemented,in which only the nodes in the monitored set whose current state is normal but whose predictive state is abnormal,are pinned with the predictive controller.Simulations show that for the scale-free (SF) CML the degree-based monitoring strategy is advantageous over the betweenness-based strategy,while for the small-world (SW) CML the situation is the opposite.With the adaptive predictive pinning control,the fewer local controllers can effectively suppress the cascade throughout the whole network.展开更多
基金Research on Control Methods and Fault Tolerance of Multilevel Electronic Transformers for PV Access(Project number:042300034204)Research on Open-Circuit Fault Diagnosis and Seamless Fault-Tolerant Control of Multiple Devices in Modular Multilevel Digital Power Amplifiers(Project number:202203021212210)Research on Key Technologies and Demonstrations of Low-Voltage DC Power Electronic Converters Based on SiC Devices Access(Project number:202102060301012)。
文摘We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.
文摘Cascade control is one of the most popular structures for process control as it is a special architecture for dealing with disturbances. However, the drawbacks of cascade control are obvious that primary controller and secondary controller should be tuned together, which influences each other. In this paper, a new Adaptive Cascade Generalized Predictive Controller (ACGPC) is introduced. ACGPC is a method issued from GPC and the inner and outer controllers of a cascade system are replaced by one cascade generalized predictive controller, where both loops model are updated by Recursive Least Squares method. Compared with existing methods, the new method is simpler and yet more effective. It can be directly integrated into commercially available industrial auto-tuning systems. Some examples are given to illustrate the effectiveness and robustness of the proposed method.
基金This work was supportedbytheNationalNaturalScienceFoundationofChina(No.60474051),theProgramforNewCenturyExcellentTalentsinUniversityofChina(NCET),andtheSpecializedResearchFundfortheDoctoralProgramofHigherEducationofChina(No.20020248028).
文摘A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the distributed control structure, online optimization of the cascade system was composed of several cascaded agents that can cooperate and exchange information via network communication. By iterating on modified distributed linear optimal control problems on the basis of estimating parameters at every iteration the correct optimal control action of the nonlinear model predictive control problem of the cascade system could be obtained, assuming that the algorithm was convergent. This approach avoids solving the complex nonlinear optimization problem and significantly reduces the computational burden. The simulation results of the fossil fuel power unit are illustrated to verify the effectiveness and practicability of the proposed algorithm.
文摘Model predictive controllers(MPC)with the two-loop scheme are successful approaches practically and can be classified into two main categories,tube-based MPC and MPCbased reference governors(RG).In this paper,an enhanced twoloop MPC design is proposed for a pre-stabilized system with the bounded uncertainty subject to the input and state constraints.The proposed method offers less conservatism than the tube-based MPC methods by enlarging the restricted input constraint.Contrary to the MPC-based RGs,the investigated method improves tracking performance of the pre-stabilized system while satisfying the constraints.Additionally,the robust global asymptotic stability of the closed-loop system is guaranteed in a novel procedure with terminal constraint relaxation.Simulation of the proposed method on a servo system shows its effectiveness in comparison to the others.
基金国家高技术研究发展计划(863计划),the National Natural Science Foundation of China,教育部新世纪高校优秀人才计划
文摘A new decentralized closcd-loop identification and predictive controller design method for a kind of cascade processes composed of several sub-processes is studied. This kind of cascade processcs has the characteristies of one-way connection. The process is divided into several two-input-two-output (TITO) sub-systems. The parameters of the first-order plus dead-time models for the transfer function matrices can be obtained using least squares method. Hence a distributed model predictive contn,ller is designed based on the coupling models of each sub-process. Simulation results on the temperature control of a reheating furnace are given to show the efficiency of the algorithm.
基金Project supported by the National Natural Science Foundation of China (No. 60804045)the Zhejiang Provincial Natural Science Foundation of China (No. Y1110229)
文摘An adaptive predictive pinning control is proposed to suppress the cascade in coupled map lattices (CMLs).Two monitoring strategies are applied:(1) A specific fraction of nodes with the highest degree or betweenness are chosen to constitute the set of monitored nodes;(2) During the cascade,an adaptive pinning control is implemented,in which only the nodes in the monitored set whose current state is normal but whose predictive state is abnormal,are pinned with the predictive controller.Simulations show that for the scale-free (SF) CML the degree-based monitoring strategy is advantageous over the betweenness-based strategy,while for the small-world (SW) CML the situation is the opposite.With the adaptive predictive pinning control,the fewer local controllers can effectively suppress the cascade throughout the whole network.