Based on a robotic telesurgery system whose function is to liberate doctor from X-ray radiation, a robotic tele-drill system is constructed. The system is in client/server structure. Client part includes main control ...Based on a robotic telesurgery system whose function is to liberate doctor from X-ray radiation, a robotic tele-drill system is constructed. The system is in client/server structure. Client part includes main control interface, video-audio interface and predictive display interface. Server part includes robot control server and video, audio server. For applying to teleoperation, a virtual reality environment of the system developed by using Java, Java 3D, Pro/E, etc. is established. The geometry and kinematics model of serial robot MOTOMAN sv3x, parallel robot, C-type arm and X-ray machine, surgery bed and its work environment are fulfilled in it. Simulation engine and its simulation syntax are finished, which made the environment controllable. This environment is used as predictive display interface in the telerobotics in order to tackling the problem in visualization feedback as ambiguous or time delay. Experiments that verified feasibility of the system have been done.展开更多
Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleopera...Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleoperation time delay is a rigorous problem,especially when the chaser is teleoperated on the ground.To eliminate the effect of time delay,a new approach for teleoperation RVD is studied.The characteristics of teleoperation RVD are analyzed by comparisons with the teleoperation robot and with manually controlled RVD;the relative motion of the chaser is predicted based on the C-W equation;and the processed measure information with time delay through the Kalman filter is utilized to correct the current prediction.Experimental results verify that the approach produces an 18% enhanced success rate of teleoperation RVD compared with direct visual feedback,and consumes less time and fuel.The developed approach also solves the time delay problem effectively.Teleoperation RVD using this method can be applied as a useful backup for autonomous RVD.展开更多
文摘Based on a robotic telesurgery system whose function is to liberate doctor from X-ray radiation, a robotic tele-drill system is constructed. The system is in client/server structure. Client part includes main control interface, video-audio interface and predictive display interface. Server part includes robot control server and video, audio server. For applying to teleoperation, a virtual reality environment of the system developed by using Java, Java 3D, Pro/E, etc. is established. The geometry and kinematics model of serial robot MOTOMAN sv3x, parallel robot, C-type arm and X-ray machine, surgery bed and its work environment are fulfilled in it. Simulation engine and its simulation syntax are finished, which made the environment controllable. This environment is used as predictive display interface in the telerobotics in order to tackling the problem in visualization feedback as ambiguous or time delay. Experiments that verified feasibility of the system have been done.
文摘Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleoperation time delay is a rigorous problem,especially when the chaser is teleoperated on the ground.To eliminate the effect of time delay,a new approach for teleoperation RVD is studied.The characteristics of teleoperation RVD are analyzed by comparisons with the teleoperation robot and with manually controlled RVD;the relative motion of the chaser is predicted based on the C-W equation;and the processed measure information with time delay through the Kalman filter is utilized to correct the current prediction.Experimental results verify that the approach produces an 18% enhanced success rate of teleoperation RVD compared with direct visual feedback,and consumes less time and fuel.The developed approach also solves the time delay problem effectively.Teleoperation RVD using this method can be applied as a useful backup for autonomous RVD.