期刊文献+
共找到1,163篇文章
< 1 2 59 >
每页显示 20 50 100
Challenges in predictive modelling of chronic kidney disease:A narrative review
1
作者 Sukhanshi Khandpur Prabhaker Mishra +1 位作者 Shambhavi Mishra Swasti Tiwari 《World Journal of Nephrology》 2024年第3期26-33,共8页
The exponential rise in the burden of chronic kidney disease(CKD)worldwide has put enormous pressure on the economy.Predictive modeling of CKD can ease this burden by predicting the future disease occurrence ahead of ... The exponential rise in the burden of chronic kidney disease(CKD)worldwide has put enormous pressure on the economy.Predictive modeling of CKD can ease this burden by predicting the future disease occurrence ahead of its onset.There are various regression methods for predictive modeling based on the distribution of the outcome variable.However,the accuracy of the predictive model depends on how well the model is developed by taking into account the goodness of fit,choice of covariates,handling of covariates measured on a continuous scale,handling of categorical covariates,and number of outcome events per predictor parameter or sample size.Optimal performance of a predictive model on an independent cohort is desired.However,there are several challenges in the predictive modeling of CKD.Disease-specific methodological challenges hinder the development of a predictive model that is cost-effective and universally applicable to predict CKD onset.In this review,we discuss the advantages and challenges of various regression models available for predictive modeling and highlight those best for future CKD prediction. 展开更多
关键词 Chronic kidney disease predictive modelling Regression Statistical modelling METHODOLOGY
下载PDF
Predictive modelling of volumetric and Marshall properties of asphalt mixtures modified with waste tire-derived char:A statistical neural network approach
2
作者 Nura Shehu Aliyu Yaro Muslich Hartadi Sutanto +4 位作者 Noor Zainab Habib Aliyu Usman Abiola Adebanjo Surajo Abubakar Wada Ahmad Hussaini Jagaba 《Journal of Road Engineering》 2024年第3期318-333,共16页
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw... The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices. 展开更多
关键词 Waste tire Neural network Sustainable practices Asphalt mixtures predictive model
下载PDF
PRACTICAL AND PREDICTIVE MODELLING OF ORE DEPOSITS IN HYDROTHERMAL SYSTEMS 被引量:1
3
作者 ZHAO Chong bin, B. E. Hobbs, H. B. Muhlhaus and A. Ord (CSIRO Division of Exploration and Mining, P. O. Box 437, Nedlands, WA 6009, Australia) 《Geotectonica et Metallogenia》 2001年第1期150-151,共2页
Over the pastfive years,we have been making efforts to develop a practical and predic- tive tool to exploreforgiantore deposits in hydrothermal systems. Towards this goal,a sig- nificant progress has been made towards... Over the pastfive years,we have been making efforts to develop a practical and predic- tive tool to exploreforgiantore deposits in hydrothermal systems. Towards this goal,a sig- nificant progress has been made towards a better understanding of the basic physical and chemical processes behind ore body formation and mineralization in hydrothermal systems. On the scientific developmentside,we have developed analytical solutions to answerthe fol- lowing scientific questions:(1) Can thepore- fluid pressure gradientbemaintained atthe val- ue of the lithostaticpressure gradientin the uppercrustof the Earth?and(2 ) Can convective pore- fluid flow take place in the uppercrustof the Earth ifthere is a fluid/mass leakage from the mantle to the upper crustof the Earth?On the modelling developmentside,we have developed numerical methods to model the following problems:(1) convective pore- fluid flow in two- dimensional hydrothermal systems;(2 ) coupled reactive pore- fluid flow and multiple species transport in porous media;(3) precipitation and dissolution of minerals and rock al- teration in the upper crust of the Earth;(4 ) double diffusion driven reactive flow transport in deformable fluid- saturated porous media with particular consideration of temperature- de- pendentchemical reaction rates;(5 ) pore- fluid flow patterns neargeological lenses in hydro- dynamic and hydrothermal systems;(6 ) dissipative structures for nonequilibrium chemical reactions in fluid- saturated porousmedia;(7) convectivepore- fluid flow and the related min- eralization in three- dimensional hydrothermal systems;(8) fluid- rock interaction problems associated with the rock alteration and metamorphic process in fluid- saturated hydrothermal/ sedimentary basins;and (9) various aspects of the fully coupled problem involving material deformation,pore- fluid flow,heattransferand species transport/ chemical reactionsin pore- fluid saturated porous rock masses. The above- mentioned work has significantly enriched our knowledge about the physical and chemical processes related to ore body formation and mineralization in the upper crustof the 展开更多
关键词 ROCK ORE PRACTICAL AND predictive modelling OF ORE DEPOSITS IN HYDROTHERMAL SYSTEMS
下载PDF
Predictive modelling for COVID-19 outbreak control:lessons from the navy cluster in Sri Lanka
4
作者 N.W.A.N.Y.Wijesekara Nayomi Herath +8 位作者 K.A.L.C.Kodituwakku H.D.B.Herath Samitha Ginige Thilanga Ruwanpathirana Manjula Kariyawasam Sudath Samaraweera Anuruddha Herath Senarupa Jayawardena Deepa Gamge 《Military Medical Research》 SCIE CSCD 2022年第1期138-140,共3页
In response to an outbreak of coronavirus disease 2019(COVID-19)within a cluster of Navy personnel in Sri Lanka commencing from 22nd April 2020,an aggressive outbreak management program was launched by the Epidemiolog... In response to an outbreak of coronavirus disease 2019(COVID-19)within a cluster of Navy personnel in Sri Lanka commencing from 22nd April 2020,an aggressive outbreak management program was launched by the Epidemiology Unit of the Ministry of Health.To predict the possible number of cases within the susceptible population under four social distancing scenarios,the COVID-19 Hospital Impact Model for Epidemics(CHIME)was used.With increasing social distancing,the epidemiological curve flattened,and its peak shifted to the right.The observed or actually reported number of cases was above the projected number of cases at the onset;however,subsequently,it fell below all predicted trends.Predictive modelling is a useful tool for the control of outbreaks such as COVID-19 in a closed community. 展开更多
关键词 COVID-19 predictive modelling SIR model Navy cluster Outbreak management
下载PDF
Fourth-Order Predictive Modelling: I. General-Purpose Closed-Form Fourth-Order Moments-Constrained MaxEnt Distribution
5
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第4期413-438,共26页
This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and k... This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and kurtosis) of the optimally predicted distribution of model results and calibrated model parameters, by combining fourth-order experimental and computational information, including fourth (and higher) order sensitivities of computed model responses to model parameters. Underlying the construction of this fourth-order predictive modeling methodology is the “maximum entropy principle” which is initially used to obtain a novel closed-form expression of the (moments-constrained) fourth-order Maximum Entropy (MaxEnt) probability distribution constructed from the first four moments (means, covariances, skewness, kurtosis), which are assumed to be known, of an otherwise unknown distribution of a high-dimensional multivariate uncertain quantity of interest. This fourth-order MaxEnt distribution provides optimal compatibility of the available information while simultaneously ensuring minimal spurious information content, yielding an estimate of a probability density with the highest uncertainty among all densities satisfying the known moment constraints. Since this novel generic fourth-order MaxEnt distribution is of interest in its own right for applications in addition to predictive modeling, its construction is presented separately, in this first part of a two-part work. The fourth-order predictive modeling methodology that will be constructed by particularizing this generic fourth-order MaxEnt distribution will be presented in the accompanying work (Part-2). 展开更多
关键词 Maximum Entropy Principle Fourth-Order predictive Modeling Data Assimilation Data Adjustment Reduced Predicted Uncertainties Model Parameter Calibration
下载PDF
Second-Order MaxEnt Predictive Modelling Methodology. III: Illustrative Application to a Reactor Physics Benchmark
6
作者 Ruixian Fang Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第2期295-322,共28页
This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the ... This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis). 展开更多
关键词 Second-Order predictive Modeling OECD/NEA Reactor Physics Benchmark Data Assimilation Best-Estimate Results Uncertainty Quantification Reduced Predicted Uncertainties
下载PDF
Second-Order MaxEnt Predictive Modelling Methodology. I: Deterministically Incorporated Computational Model (2nd-BERRU-PMD)
7
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第2期236-266,共31页
This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this met... This work presents a comprehensive second-order predictive modeling (PM) methodology designated by the acronym 2<sup>nd</sup>-BERRU-PMD. The attribute “2<sup>nd</sup>” indicates that this methodology incorporates second-order uncertainties (means and covariances) and second-order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best- Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the acronym indicates “deterministic,” referring to the deterministic inclusion of the computational model responses. The 2<sup>nd</sup>-BERRU-PMD methodology is fundamentally based on the maximum entropy (MaxEnt) principle. This principle is in contradistinction to the fundamental principle that underlies the extant data assimilation and/or adjustment procedures which minimize in a least-square sense a subjective user-defined functional which is meant to represent the discrepancies between measured and computed model responses. It is shown that the 2<sup>nd</sup>-BERRU-PMD methodology generalizes and extends current data assimilation and/or data adjustment procedures while overcoming the fundamental limitations of these procedures. In the accompanying work (Part II), the alternative framework for developing the “second- order MaxEnt predictive modelling methodology” is presented by incorporating probabilistically (as opposed to “deterministically”) the computed model responses. 展开更多
关键词 Second-Order predictive Modeling Data Assimilation Data Adjustment Uncertainty Quantification Reduced Predicted Uncertainties
下载PDF
Second-Order MaxEnt Predictive Modelling Methodology. II: Probabilistically Incorporated Computational Model (2nd-BERRU-PMP)
8
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第2期267-294,共28页
This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and par... This work presents a comprehensive second-order predictive modeling (PM) methodology based on the maximum entropy (MaxEnt) principle for obtaining best-estimate mean values and correlations for model responses and parameters. This methodology is designated by the acronym 2<sup>nd</sup>-BERRU-PMP, where the attribute “2<sup>nd</sup>” indicates that this methodology incorporates second- order uncertainties (means and covariances) and second (and higher) order sensitivities of computed model responses to model parameters. The acronym BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“P”) in the acronym indicates “probabilistic,” referring to the MaxEnt probabilistic inclusion of the computational model responses. This is in contradistinction to the 2<sup>nd</sup>-BERRU-PMD methodology, which deterministically combines the computed model responses with the experimental information, as presented in the accompanying work (Part I). Although both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies yield expressions that include second (and higher) order sensitivities of responses to model parameters, the respective expressions for the predicted responses, for the calibrated predicted parameters and for their predicted uncertainties (covariances), are not identical to each other. Nevertheless, the results predicted by both the 2<sup>nd</sup>-BERRU-PMP and the 2<sup>nd</sup>-BERRU-PMD methodologies encompass, as particular cases, the results produced by the extant data assimilation and data adjustment procedures, which rely on the minimization, in a least-square sense, of a user-defined functional meant to represent the discrepancies between measured and computed model responses. 展开更多
关键词 Second-Order predictive Modeling Data Assimilation Data Adjustment Uncertainty Quantification Reduced Predicted Uncertainties
下载PDF
Fourth-Order Predictive Modelling: II. 4th-BERRU-PM Methodology for Combining Measurements with Computations to Obtain Best-Estimate Results with Reduced Uncertainties
9
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第4期439-475,共37页
This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, com... This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, computed and measured model responses, as well as fourth (and higher) order sensitivities of computed model responses to model parameters. This new methodology is designated by the acronym 4<sup>th</sup>-BERRU-PM, which stands for “fourth-order best-estimate results with reduced uncertainties.” The results predicted by the 4<sup>th</sup>-BERRU-PM incorporates, as particular cases, the results previously predicted by the second-order predictive modeling methodology 2<sup>nd</sup>-BERRU-PM, and vastly generalizes the results produced by extant data assimilation and data adjustment procedures. 展开更多
关键词 Fourth-Order predictive Modeling Data Assimilation Data Adjustment Uncertainty Quantification Reduced Predicted Uncertainties
下载PDF
Geospatial predictive modelling of the Neolithic archaeological sites of Magnesia in Greece 被引量:1
10
作者 Konstantinos GPerakis Athanasios K.Moysiadis 《International Journal of Digital Earth》 SCIE 2011年第5期421-433,共13页
Sources of heterogeneous geospatial data such as the elevation,the slope,the aspect,the water network and the current settlements related to the known Neolithic archaeological sites of Magnesia,are used in an attempt ... Sources of heterogeneous geospatial data such as the elevation,the slope,the aspect,the water network and the current settlements related to the known Neolithic archaeological sites of Magnesia,are used in an attempt to confirm the existence and allow for the prediction of other archaeological sites using predictive modelling theory.Predictive modelling allows the update of the problem solving strategy as soon as new data layers are available.The DempsterShafer Theory also commonly referred to as evidential reasoning(ER)is used to compose probability maps of areas of archaeological interest from physiographical and historical data.The advantage of this theory is that the ignorance is quantified and used to compose the probability maps named as belief,plausibility and belief interval for the archaeological sites.The final digital probability maps show that the Neolithic archaeological sites can be detected in the prefecture of Magnesia.This research study forms a methodological tool for the prediction of new archaeological sites in other areas of archaeological interest according to the physiographical and historical characteristics of the archaeological period being examined.It also contributes to the digital earth modelling and archaeological site protection,one of the most critical and challenging global initiatives. 展开更多
关键词 archaeological predictive modelling DempsterShafer Theory digital probability maps uncertainty visualisation
原文传递
Operation Efficiency Optimisation Modelling and Application of Model Predictive Control 被引量:2
11
作者 Xiaohua Xia Jiangfeng Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第2期166-172,共7页
The efficiency of any energy system can be charaterised by the relevant efficiency components in terms of performance, operation, equipment and technology(POET). The overall energy efficiency of the system can be opti... The efficiency of any energy system can be charaterised by the relevant efficiency components in terms of performance, operation, equipment and technology(POET). The overall energy efficiency of the system can be optimised by studying the POET energy efficiency components. For an existing energy system, the improvement of operation efficiency will usually be a quick win for energy efficiency. Therefore, operation efficiency improvement will be the main purpose of this paper. General procedures to establish operation efficiency optimisation models are presented. Model predictive control, a popular technique in modern control theory, is applied to solve the obtained energy models. From the case studies in water pumping systems, model predictive control will have a prosperous application in more energy efficiency problems. 展开更多
关键词 Model predictive control(MPC) operation efficiency energy efficiency
下载PDF
Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique 被引量:3
12
作者 Wen-Jing Hu Gang Bai +6 位作者 Yan Wang Dong-Mei Hong Jin-Hua Jiang Jia-Xun Li Yin Hua Xin-Yu Wang Ying Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1227-1235,共9页
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn... BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance. 展开更多
关键词 Elderly patients Abdominal cancer Postoperative delirium Synthetic minority oversampling technique predictive modeling Surgical outcomes
下载PDF
NUMERICAL GEODYNAMIC MODELLING OF COUPLED MECHANO-THERMO-HYDROLOGICAL PROCESSES AND ITS APPLICATION IN PREDICTIVE EXPLORATION IN THE FENGHUANGSHAN ORE FIELD, TONGLING 被引量:1
13
作者 LIU Liangming PENG Shenglin ZHANG Yanhua 《Geotectonica et Metallogenia》 2005年第2期164-173,共10页
Mineralisation is the result of the coupled multi-geodynamic processes in the crust. The coupled mechano-thermo-hydrological (MTH) processes are the basic physical processes that govern the location of the hydrother... Mineralisation is the result of the coupled multi-geodynamic processes in the crust. The coupled mechano-thermo-hydrological (MTH) processes are the basic physical processes that govern the location of the hydrothermal mineralization, which can be simulated in the computer by using of the numerical codes, such as FLAC. The numerical modeling results can be used not only to explain the features of existing ore deposits, but also to predict the fhvorable mineralization locations. This paper has summarized the basic equations describing coupled MHT processes in the water-saturated porous rocks, the principles of FLAC, and its application to the MHT processes related to copper mineralization in the Fenghuangshan ore field. We used the FLAC to simulate the syn-deformation cooling and fluid flowing evolution after the intrusion was emplaced and solidified. The modeling results suggest a most prospective exploration area where the subsequent exploration supported the prediction and the test bore hole disclosed the high quality copper ore bodies in the target, demonstrating a positive role of the numerical MTH modeling in facilitating predictive ore discovery. 展开更多
关键词 mechano-thermo-hydrological coupling geodynamics numerical modeling mineral prediction Fenghuangshan
下载PDF
Establishment of predictive models and determinants of preoperative gastric retention in endoscopic retrograde cholangiopancreatography 被引量:2
14
作者 Ying Jia Hao-Jun Wu +3 位作者 Tang Li Jia-Bin Liu Ling Fang Zi-Ming Liu 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第8期2574-2582,共9页
BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects t... BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects the smooth progress of the operation.The study found that female,biliary and pancreatic malignant tumor,digestive tract obstruction and other factors are closely related to gastric retention,so the establishment of predictive model is very important to reduce the risk of operation.METHODS A retrospective analysis was conducted on 190 patients admitted to our hospital for ERCP preparation between January 2020 and February 2024.Patient baseline clinical data were collected using an electronic medical record system.Patients were randomly matched in a 1:4 ratio with data from 190 patients during the same period to establish a validation group(n=38)and a modeling group(n=152).Patients in the modeling group were divided into the gastric retention group(n=52)and non-gastric retention group(n=100)based on whether gastric retention occurred preoperatively.General data of patients in the validation group and identify factors influencing preoperative gastric retention in ERCP patients.A predictive model for preoperative gastric retention in ERCP patients was constructed,and calibration curves were used for validation.The receiver operating characteristic(ROC)curve was analyzed to evaluate the predictive value of the model.RESULTS We found no statistically significant difference in general data between the validation group and modeling group(P>0.05).The comparison of age,body mass index,hypertension,and diabetes between the two groups showed no statistically significant difference(P>0.05).However,we noted statistically significant differences in gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction between the two groups(P<0.05).Mul-tivariate logistic regression analysis showed that gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction were independent factors influencing preoperative gastric retention in ERCP patients(P<0.05).The results of logistic regression analysis revealed that gender,primary disease,jaundice,opioid use,and gastroin-testinal obstruction were included in the predictive model for preoperative gastric retention in ERCP patients.The calibration curves in the training set and validation set showed a slope close to 1,indicating good consistency between the predicted risk and actual risk.The ROC analysis results showed that the area under the curve(AUC)of the predictive model for preoperative gastric retention in ERCP patients in the training set was 0.901 with a standard error of 0.023(95%CI:0.8264-0.9567),and the optimal cutoff value was 0.71,with a sensitivity of 87.5 and specificity of 84.2.In the validation set,the AUC of the predictive model was 0.842 with a standard error of 0.013(95%CI:0.8061-0.9216),and the optimal cutoff value was 0.56,with a sensitivity of 56.2 and specificity of 100.0.CONCLUSION Gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction are factors influencing preoperative gastric retention in ERCP patients.A predictive model established based on these factors has high predictive value. 展开更多
关键词 CHOLANGIOPANCREATOGRAPHY Gastric retention Influencing factors predictive model ENDOSCOPE
下载PDF
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:1
15
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
下载PDF
Modelling analysis embodies drastic transition among global potential natural vegetations in face of changing climate
16
作者 Zhengchao Ren Lei Liu +1 位作者 Fang Yin Xiaoni Liu 《Forest Ecosystems》 SCIE CSCD 2024年第2期184-192,共9页
Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional pr... Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional processes,and underlying mechanisms of global natural vegetation,particularly in the case of ongoing climate warming.In this study,we visualize the spatio-temporal pattern and inter-transition procedure of global PNV,analyse the shifting distances and directions of global PNV under the influence of climatic disturbance,and explore the mechanisms of global PNV in response to temperature and precipitation fluctuations.To achieve this,we utilize meteorological data,mainly temperature and precipitation,from six phases:the Last Inter-Glacial(LIG),the Last Glacial Maximum(LGM),the Mid Holocene(MH),the Present Day(PD),2030(20212040)and 2090(2081–2100),and employ a widely-accepted comprehensive and sequential classification sy–stem(CSCS)for global PNV classification.We find that the spatial patterns of five PNV groups(forest,shrubland,savanna,grassland and tundra)generally align with their respective ecotopes,although their distributions have shifted due to fluctuating temperature and precipitation.Notably,we observe an unexpected transition between tundra and savanna despite their geographical distance.The shifts in distance and direction of five PNV groups are mainly driven by temperature and precipitation,although there is heterogeneity among these shifts for each group.Indeed,the heterogeneity observed among different global PNV groups suggests that they may possess varying capacities to adjust to and withstand the impacts of changing climate.The spatio-temporal distributions,mutual transitions and shift tendencies of global PNV and its underlying mechanism in face of changing climate,as revealed in this study,can significantly contribute to the development of strategies for mitigating warming and promoting re-vegetation in degraded regions worldwide. 展开更多
关键词 Potential natural vegetation Global warming Vegetation classification Predicted model CSCS
下载PDF
Assessing recent recurrence after hepatectomy for hepatitis Brelated hepatocellular carcinoma by a predictive model based on sarcopenia
17
作者 Hong Peng Si-Yi Lei +9 位作者 Wei Fan Yu Dai Yi Zhang Gen Chen Ting-Ting Xiong Tian-Zhao Liu Yue Huang Xiao-Feng Wang Jin-Hui Xu Xin-Hua Luo 《World Journal of Gastroenterology》 SCIE CAS 2024年第12期1727-1738,共12页
BACKGROUND Sarcopenia may be associated with hepatocellular carcinoma(HCC)following hepatectomy.But traditional single clinical variables are still insufficient to predict recurrence.We still lack effective prediction... BACKGROUND Sarcopenia may be associated with hepatocellular carcinoma(HCC)following hepatectomy.But traditional single clinical variables are still insufficient to predict recurrence.We still lack effective prediction models for recent recurrence(time to recurrence<2 years)after hepatectomy for HCC.AIM To establish an interventable prediction model to estimate recurrence-free survival(RFS)after hepatectomy for HCC based on sarcopenia.METHODS We retrospectively analyzed 283 hepatitis B-related HCC patients who underwent curative hepatectomy for the first time,and the skeletal muscle index at the third lumbar spine was measured by preoperative computed tomography.94 of these patients were enrolled for external validation.Cox multivariate analysis was per-formed to identify the risk factors of postoperative recurrence in training cohort.A nomogram model was developed to predict the RFS of HCC patients,and its predictive performance was validated.The predictive efficacy of this model was evaluated using the receiver operating characteristic curve.RESULTS Multivariate analysis showed that sarcopenia[Hazard ratio(HR)=1.767,95%CI:1.166-2.678,P<0.05],alpha-fetoprotein≥40 ng/mL(HR=1.984,95%CI:1.307-3.011,P<0.05),the maximum diameter of tumor>5 cm(HR=2.222,95%CI:1.285-3.842,P<0.05),and hepatitis B virus DNA level≥2000 IU/mL(HR=2.1,95%CI:1.407-3.135,P<0.05)were independent risk factors associated with postoperative recurrence of HCC.Based on the sarcopenia to assess the RFS model of hepatectomy with hepatitis B-related liver cancer disease(SAMD)was established combined with other the above risk factors.The area under the curve of the SAMD model was 0.782(95%CI:0.705-0.858)in the training cohort(sensitivity 81%,specificity 63%)and 0.773(95%CI:0.707-0.838)in the validation cohort.Besides,a SAMD score≥110 was better to distinguish the high-risk group of postoperative recurrence of HCC.CONCLUSION Sarcopenia is associated with recent recurrence after hepatectomy for hepatitis B-related HCC.A nutritional status-based prediction model is first established for postoperative recurrence of hepatitis B-related HCC,which is superior to other models and contributes to prognosis prediction. 展开更多
关键词 ALPHA-FETOPROTEIN Hepatitis B virus HEPATECTOMY Hepatocellular carcinoma NOMOGRAM predictive models RECURRENCE Recurrence-free survival Risk factors SARCOPENIA
下载PDF
Risk Factors and Predictive Nomogram for Survival in Elderly Patients with Brain Glioma
18
作者 Zhi-cheng FAN Wen-jian ZHAO +11 位作者 Yang JIAO Shao-chun GUO Yun-peng KOU Min CHAO Na WANG Chen-chen ZHOU Yuan WANG Jing-hui LIU Yu-long ZHAI Pei-gang JI Chao FAN Liang WANG 《Current Medical Science》 SCIE CAS 2024年第4期759-770,共12页
Objective To determine the factors that contribute to the survival of elderly individuals diagnosed with brain glioma and develop a prognostic nomogram.Methods Data from elderly individuals(age≥65 years)histologicall... Objective To determine the factors that contribute to the survival of elderly individuals diagnosed with brain glioma and develop a prognostic nomogram.Methods Data from elderly individuals(age≥65 years)histologically diagnosed with brain glioma were sourced from the Surveillance,Epidemiology,and End Results(SEER)database.The dataset was randomly divided into a training cohort and an internal validation cohort at a 6:4 ratio.Additionally,data obtained from Tangdu Hospital constituted an external validation cohort for the study.The identification of independent prognostic factors was achieved through the least absolute shrinkage and selection operator(LASSO)and multivariate Cox regression analysis,enabling the construction of a nomogram.Model performance was evaluated using C-index,ROC curves,calibration plot and decision curve analysis(DCA).Results A cohort of 20483 elderly glioma patients was selected from the SEER database.Five prognostic factors(age,marital status,histological type,stage,and treatment)were found to significantly impact overall survival(OS)and cancer-specific survival(CSS),with tumor location emerging as a sixth variable independently linked to CSS.Subsequently,nomogram models were developed to predict the probabilities of survival at 6,12,and 24 months.The assessment findings from the validation queue indicate a that the model exhibited strong performance.Conclusion Our nomograms serve as valuable prognostic tools for assessing the survival probability of elderly glioma patients.They can potentially assist in risk stratification and clinical decision-making. 展开更多
关键词 elderly brain glioma Surveillance Epidemiology and End Results(SEER) NOMOGRAM prognosis prediction model
下载PDF
Predictive modeling for post operative delirium in elderly
19
作者 Chris B Lamprecht Abeer Dagra Brandon Lucke-Wold 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3761-3764,共4页
Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenom... Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability. 展开更多
关键词 Post-operative delirium Elderly delirium Neurocognitive syndrome NEUROTRANSMITTERS Abdominal malignancy predictive model Synthetic minority oversampling technique
下载PDF
A Novel Predictive Model for Edge Computing Resource Scheduling Based on Deep Neural Network
20
作者 Ming Gao Weiwei Cai +3 位作者 Yizhang Jiang Wenjun Hu Jian Yao Pengjiang Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期259-277,共19页
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of se... Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency problem.However,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this limitation.Therefore,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results. 展开更多
关键词 Edge computing resource scheduling predictive models
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部