A wide variety of predictive analytics techniques have been developed in statistics, machine learning and data mining; however, many of these algorithms take a black-box approach in which data is input and future pred...A wide variety of predictive analytics techniques have been developed in statistics, machine learning and data mining; however, many of these algorithms take a black-box approach in which data is input and future predictions are output with no insight into what goes on during the process. Unfortunately, such a closed system approach often leaves little room for injecting domain expertise and can result in frustration from analysts when results seem snurious or confusing. In order to allow for more human-centric approaches, the visualization community has begun developing methods to enable users to incorporate expert knowledge into the pre- diction process at all stages, including data cleaning, feature selection, model building and model validation. This paper surveys current progress and trends in predictive visual ana- lytics, identifies the common framework in which predictive visual analytics systems operate, and develops a summariza- tion of the predictive analytics workfiow.展开更多
基金This work was supported by National Basic Re- search Program of China (973 Program) (2015CB352503), Major Pro- gram of the National Natural Science Foundation of China (61232012), the National Natural Science Foundation of China (Grant Nos. 61303141, 61422211, u1536118, u1536119), Zhejiang Provincial Natural Science Foundation of China (LR13F020001), the Fundamental Research Funds for the Central Universities, the Innovation Joint Research Center for Cyber- Physical-Society System, and the United State's National Science Founda- tion (1350573).
文摘A wide variety of predictive analytics techniques have been developed in statistics, machine learning and data mining; however, many of these algorithms take a black-box approach in which data is input and future predictions are output with no insight into what goes on during the process. Unfortunately, such a closed system approach often leaves little room for injecting domain expertise and can result in frustration from analysts when results seem snurious or confusing. In order to allow for more human-centric approaches, the visualization community has begun developing methods to enable users to incorporate expert knowledge into the pre- diction process at all stages, including data cleaning, feature selection, model building and model validation. This paper surveys current progress and trends in predictive visual ana- lytics, identifies the common framework in which predictive visual analytics systems operate, and develops a summariza- tion of the predictive analytics workfiow.