This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct...Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.展开更多
In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of ...In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements.展开更多
The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aer...The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aerial Vehicles(QUAVs).This scheme mainly consists of predefinedtime estimators and fixed-time tracking controllers,with a hybrid Laplacian matrix describing the communication among these QUAVs.At the first layer,we devise predefined time estimators for leading and following QUAVs,enabling accurate estimation of desired information.In the second layer,we initially devise a fixed-time hybrid observer to estimate unknown disturbances and actuator faults.Fixedtime translational tracking controllers are then proposed,and the intermediary control input from these controllers is used to extract the desired attitude and angular velocities for the fixed-time rotational tracking controllers.We employ an exact tracking differentiator to handle variables that are challenging to differentiate directly.The paper includes a demonstration of the control system stability through mathematical proof,as well as the presentation of simulation results and comparative simulations.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of ...BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of intensive and supportive glycemic management strategies over a 12-month period in individuals with T2DM with glycated hemoglobin(HbA1c)≥10%and varying backgrounds of glycemic control.METHODS This prospective observational study investigated glycemic control in patients with poorly controlled T2DM over 12 months.Participants were categorized into four groups based on prior glycemic history:Newly diagnosed,previously well controlled with recent worsening,previously off-target but now worsening,and HbA1c consistently above 10%.HbA1c levels were monitored quarterly,and patients received medical,educational,and dietary support as needed.The analysis focused on the success rates of good glycemic control and the associated factors within each group.RESULTS The study showed significant improvements in HbA1c levels in all participants.The most significant improvement was observed in individuals newly diagnosed with diabetes:65%achieved an HbA1c target of≤7%.The results varied between participants with different glycemic control histories,followed by decreasing success rates:39%in participants with previously good glycemic control,21%in participants whose glycemic control had deteriorated compared to before,and only 10%in participants with persistently poor control,with mean HbA1c levels of 6.3%,7.7%,8.2%,and 9.7%,respectively.After one year,65.2%of the“newly diagnosed patients”,39.3%in the“previously controlled group”,21.9%in the“previously off-target but now worsened'”group and 10%in the“poorly controlled from the start”group had achieved HbA1c levels of 7 and below.CONCLUSION In poorly controlled diabetes,the rate at which treatment goals are achieved is associated with the glycemic background characteristics,emphasizing the need for tailored strategies.Therefore,different and comprehensive treatment approaches are needed for patients with persistent uncontrolled diabetes.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
The quality control chart of fructo-oligosaccharides in milk powder was established to determine whether the detection process and results are in control state.The content of fructo-oligosaccharides in milk powder con...The quality control chart of fructo-oligosaccharides in milk powder was established to determine whether the detection process and results are in control state.The content of fructo-oligosaccharides in milk powder control samples was determined by ion chromatography,and the quality control chart of fructo-oligosaccharides was established to analyze the controlled state.The results indicate that the median of the quality control chart is 1613.14 mg/100 g,and the standard deviation is 85.57 mg/100 g.The new quality control points were evaluated and analyzed,and the precision changed,but the mean value did not change.Further F test was conducted to determine that the precision did not change significantly,indicating that the test was in a statistical control state,and the detection process,method and results were controlled.展开更多
The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper p...The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge.展开更多
The co-infection of corona and influenza viruses has emerged as a significant threat to global public health due to their shared modes of transmission and overlapping clinical symptoms.This article presents a novel ma...The co-infection of corona and influenza viruses has emerged as a significant threat to global public health due to their shared modes of transmission and overlapping clinical symptoms.This article presents a novel mathematical model that addresses the dynamics of this co-infection by extending the SEIR(Susceptible-Exposed-Infectious-Recovered)framework to incorporate treatment and hospitalization compartments.The population is divided into eight compartments,with infectious individuals further categorized into influenza infectious,corona infectious,and co-infection cases.The proposed mathematical model is constrained to adhere to fundamental epidemiological properties,such as non-negativity and boundedness within a feasible region.Additionally,the model is demonstrated to be well-posed with a unique solution.Equilibrium points,including the disease-free and endemic equilibria,are identified,and various properties related to these equilibrium points,such as the basic reproduction number,are determined.Local and global sensitivity analyses are performed to identify the parameters that highly influence disease dynamics and the reproduction number.Knowing the most influential parameters is crucial for understanding their impact on the co-infection’s spread and severity.Furthermore,an optimal control problem is defined to minimize disease transmission and to control strategy costs.The purpose of our study is to identify the most effective(optimal)control strategies for mitigating the spread of the co-infection with minimum cost of the controls.The results illustrate the effectiveness of the implemented control strategies in managing the co-infection’s impact on the population’s health.This mathematical modeling and control strategy framework provides valuable tools for understanding and combating the dual threat of corona and influenza co-infection,helping public health authorities and policymakers make informed decisions in the face of these intertwined epidemics.展开更多
Gualou-Xiebai-Banxia Decoction(GXBD)is a traditional Chinese herbal formula including four traditional Chinese medicines:Gualou(Trichosanthis Fructus,TF),Xiebai(Allii Macrostemonis Bulbus,AMB),Banxia(Pinelliae Rhizoma...Gualou-Xiebai-Banxia Decoction(GXBD)is a traditional Chinese herbal formula including four traditional Chinese medicines:Gualou(Trichosanthis Fructus,TF),Xiebai(Allii Macrostemonis Bulbus,AMB),Banxia(Pinelliae Rhizoma,PR)and yellow wine.It is a classical therapy for chest stuffiness and pain syndrome and is widely used in the clinical treatment of coronary heart disease.It also shows significant therapeutic effects on pulmonary heart disease,hyperlipidemia,and arrhythmia.This study conducted a literature review and collected information on GXBD from databases such as PubMed,Web of Science,China National Knowledge Infrastructure,and ScienceDirect.The result indicated that the main active ingredients of GXBD are steroids,flavonoids,terpenoids,alkaloids,amino acids,and organic acids.Trigonelline,macrostemonoside and cucurbitacin B can provide reference for its quality control.GXBD may exert therapeutic effects on coronary heart disease through AMPK,PI3K-AKT,oxLDL,VEGF,and NF-κB signal pathways.This review provides a comprehensive analysis and summary of the chemical composition and in vivo metabolism of three traditional Chinese medicines(TF,AMB,and PR),along with an evaluation of the chemical composition,quality control,pharmacological effects,and clinical application of GXBD.Based on these,areas requiring further research on GXBD have been proposed to provide a reference for its further development and new drug research.展开更多
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta...This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.展开更多
To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing ...To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing the outcomes of destructive testing on various specimens and fine-tuning the results with the aid of the IMK(Ibarra Medina Krawinkler)recovery model,the energy dissipation capacity coefficient of the pier columns were able to be determined.Furthermore,utilizing the calibrated damage model parameters,the damage index for each specimen were calculated.Based on the obtained damage levels,three distinct pre-damage conditions were designed for the pier columns:minor damage,moderate damage,and severe damage.The study then predicted the variations in hysteresis curves and damage indices under cyclic loading conditions.The experimental findings reveal that the displacement at the top of the pier columns can serve as a reliable indicator for controlling the damage level of pier columns post-loading.Moreover,the calibrated damage index model exhibits proficiency in accurately predicting the damage level of RC pier columns under cyclic loading.展开更多
With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impa...With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impact on thelifespan of wind turbines,these subjects have become important topics in turbine blade design.In this article,firstaspects related to the aeroelastic(structural and aerodynamic)modeling of large wind turbine blades are summarized.Then,two main methods for blade vibration control are outlined(passive control and active control),including the case of composite blades.Some improvement schemes are proposed accordingly,with a specialfocus on the industry’s outstanding suppression scheme for stall-induced nonlinear flutter and a new high-frequencymicro-vibration control scheme.Finally,future research directions are indicated based on existingresearch.展开更多
To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking contro...To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking controller,whose parameters are set using an Ant Colony OptimizationSlime Mould Algorithm(ACO-SMA).Initially,a nonlinear flight dynamics model of the helicopter is constructed.Observer gain functions and nonlinear feedback from a vibrational suppression function to improve the tracking performance of the controller,addressing issues in disturbance estimation and compensation of the Active Disturbance Rejection Control(ADRC).Simultaneously,a cascaded loop system,comprising an internal attitude loop and an external position loop,is created,and the ant colony-slime mold hybrid algorithm optimizes the system parameters of the trajectory tracking controller.Finally,helicopter trajectory tracking simulation experiments are conducted,including spiral ascending and“8”shape climbing maneuvers.The findings indicate that the ADRC employed for helicopter trajectory tracking exhibits outstanding performance in rejecting disturbances caused by gusts and accurately tracking trajectories.The trajectory tracking controller,whose parameters are optimized by the ACO-SMA,shows higher tracking precision compared to the conventional PID and ADRC,thereby substantially improving the precision of maneuver tasks.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
基金supported by the National Natural Science Foundation of China(Project No.52377082)the Scientific Research Program of Jilin Provincial Department of Education(Project No.JJKH20230123KJ).
文摘Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.
基金partially supported by National Natura Science Foundation of China (62350710214, U23A20325)Shenzhen Key Laboratory of Control Theory and Intelligent Systems (ZDSYS20220330161800001)。
文摘In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements.
基金supported by Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-QN-0733)Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515110753)+2 种基金China Postdoctoral Science Foundation(No.2022M722583)China Industry-UniversityResearch Innovation Foundation(No.2022IT188)National Key Laboratory of Air-based Information Perception and Fusion and the Aeronautic Science Foundation of China(No.20220001068001)。
文摘The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aerial Vehicles(QUAVs).This scheme mainly consists of predefinedtime estimators and fixed-time tracking controllers,with a hybrid Laplacian matrix describing the communication among these QUAVs.At the first layer,we devise predefined time estimators for leading and following QUAVs,enabling accurate estimation of desired information.In the second layer,we initially devise a fixed-time hybrid observer to estimate unknown disturbances and actuator faults.Fixedtime translational tracking controllers are then proposed,and the intermediary control input from these controllers is used to extract the desired attitude and angular velocities for the fixed-time rotational tracking controllers.We employ an exact tracking differentiator to handle variables that are challenging to differentiate directly.The paper includes a demonstration of the control system stability through mathematical proof,as well as the presentation of simulation results and comparative simulations.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
文摘BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of intensive and supportive glycemic management strategies over a 12-month period in individuals with T2DM with glycated hemoglobin(HbA1c)≥10%and varying backgrounds of glycemic control.METHODS This prospective observational study investigated glycemic control in patients with poorly controlled T2DM over 12 months.Participants were categorized into four groups based on prior glycemic history:Newly diagnosed,previously well controlled with recent worsening,previously off-target but now worsening,and HbA1c consistently above 10%.HbA1c levels were monitored quarterly,and patients received medical,educational,and dietary support as needed.The analysis focused on the success rates of good glycemic control and the associated factors within each group.RESULTS The study showed significant improvements in HbA1c levels in all participants.The most significant improvement was observed in individuals newly diagnosed with diabetes:65%achieved an HbA1c target of≤7%.The results varied between participants with different glycemic control histories,followed by decreasing success rates:39%in participants with previously good glycemic control,21%in participants whose glycemic control had deteriorated compared to before,and only 10%in participants with persistently poor control,with mean HbA1c levels of 6.3%,7.7%,8.2%,and 9.7%,respectively.After one year,65.2%of the“newly diagnosed patients”,39.3%in the“previously controlled group”,21.9%in the“previously off-target but now worsened'”group and 10%in the“poorly controlled from the start”group had achieved HbA1c levels of 7 and below.CONCLUSION In poorly controlled diabetes,the rate at which treatment goals are achieved is associated with the glycemic background characteristics,emphasizing the need for tailored strategies.Therefore,different and comprehensive treatment approaches are needed for patients with persistent uncontrolled diabetes.
基金supported by the National Nature Science Foundation of China(61304223)the Aeronautical Science Foundation of China(2016ZA52009)the Research Fund for the Doctoral Program of Higher Education of China(20123218120015)
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金Supported by the Inner Mongolia Autonomous Region s Key Research and Achievement Transformation plan (2023YFHH0093).
文摘The quality control chart of fructo-oligosaccharides in milk powder was established to determine whether the detection process and results are in control state.The content of fructo-oligosaccharides in milk powder control samples was determined by ion chromatography,and the quality control chart of fructo-oligosaccharides was established to analyze the controlled state.The results indicate that the median of the quality control chart is 1613.14 mg/100 g,and the standard deviation is 85.57 mg/100 g.The new quality control points were evaluated and analyzed,and the precision changed,but the mean value did not change.Further F test was conducted to determine that the precision did not change significantly,indicating that the test was in a statistical control state,and the detection process,method and results were controlled.
基金funded by the Basic Science(Natural Science)Research Project of Colleges and Universities in Jiangsu Province,Grant Number 22KJD470002.
文摘The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge.
基金supported by NASA Oklahoma Established Program to Stimulate Competitive Research(EPSCoR)Infrastructure Development,“Machine Learning Ocean World Biosignature Detection from Mass Spec”(PI:BrettMcKinney),Grant No.80NSSC24M0109Tandy School of Computer Science,University of Tulsa.
文摘The co-infection of corona and influenza viruses has emerged as a significant threat to global public health due to their shared modes of transmission and overlapping clinical symptoms.This article presents a novel mathematical model that addresses the dynamics of this co-infection by extending the SEIR(Susceptible-Exposed-Infectious-Recovered)framework to incorporate treatment and hospitalization compartments.The population is divided into eight compartments,with infectious individuals further categorized into influenza infectious,corona infectious,and co-infection cases.The proposed mathematical model is constrained to adhere to fundamental epidemiological properties,such as non-negativity and boundedness within a feasible region.Additionally,the model is demonstrated to be well-posed with a unique solution.Equilibrium points,including the disease-free and endemic equilibria,are identified,and various properties related to these equilibrium points,such as the basic reproduction number,are determined.Local and global sensitivity analyses are performed to identify the parameters that highly influence disease dynamics and the reproduction number.Knowing the most influential parameters is crucial for understanding their impact on the co-infection’s spread and severity.Furthermore,an optimal control problem is defined to minimize disease transmission and to control strategy costs.The purpose of our study is to identify the most effective(optimal)control strategies for mitigating the spread of the co-infection with minimum cost of the controls.The results illustrate the effectiveness of the implemented control strategies in managing the co-infection’s impact on the population’s health.This mathematical modeling and control strategy framework provides valuable tools for understanding and combating the dual threat of corona and influenza co-infection,helping public health authorities and policymakers make informed decisions in the face of these intertwined epidemics.
基金National Natural ScienceFoundation of China (grant number: 81973696).
文摘Gualou-Xiebai-Banxia Decoction(GXBD)is a traditional Chinese herbal formula including four traditional Chinese medicines:Gualou(Trichosanthis Fructus,TF),Xiebai(Allii Macrostemonis Bulbus,AMB),Banxia(Pinelliae Rhizoma,PR)and yellow wine.It is a classical therapy for chest stuffiness and pain syndrome and is widely used in the clinical treatment of coronary heart disease.It also shows significant therapeutic effects on pulmonary heart disease,hyperlipidemia,and arrhythmia.This study conducted a literature review and collected information on GXBD from databases such as PubMed,Web of Science,China National Knowledge Infrastructure,and ScienceDirect.The result indicated that the main active ingredients of GXBD are steroids,flavonoids,terpenoids,alkaloids,amino acids,and organic acids.Trigonelline,macrostemonoside and cucurbitacin B can provide reference for its quality control.GXBD may exert therapeutic effects on coronary heart disease through AMPK,PI3K-AKT,oxLDL,VEGF,and NF-κB signal pathways.This review provides a comprehensive analysis and summary of the chemical composition and in vivo metabolism of three traditional Chinese medicines(TF,AMB,and PR),along with an evaluation of the chemical composition,quality control,pharmacological effects,and clinical application of GXBD.Based on these,areas requiring further research on GXBD have been proposed to provide a reference for its further development and new drug research.
基金supported by the National Natural Science Foundation of China(Nos.51767017 and 51867015)the Basic Research and Innovation Group Project of Gansu(No.18JR3RA13)the Major Science and Technology Project of Gansu(No.19ZD2GA003).
文摘This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.
基金supported by National Natural Science Foundation of China(Project No.51878156)EPC Innovation Consulting Project for Longkou Nanshan LNG Phase I Receiving Terminal(Z2000LGENT0399).
文摘To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing the outcomes of destructive testing on various specimens and fine-tuning the results with the aid of the IMK(Ibarra Medina Krawinkler)recovery model,the energy dissipation capacity coefficient of the pier columns were able to be determined.Furthermore,utilizing the calibrated damage model parameters,the damage index for each specimen were calculated.Based on the obtained damage levels,three distinct pre-damage conditions were designed for the pier columns:minor damage,moderate damage,and severe damage.The study then predicted the variations in hysteresis curves and damage indices under cyclic loading conditions.The experimental findings reveal that the displacement at the top of the pier columns can serve as a reliable indicator for controlling the damage level of pier columns post-loading.Moreover,the calibrated damage index model exhibits proficiency in accurately predicting the damage level of RC pier columns under cyclic loading.
基金supported by the Natural Science Foundation of Shandong Provincial of China(Grant Number ZR2022ME093)the Natural Science Foundation of China(Grant Number 51675315).
文摘With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impact on thelifespan of wind turbines,these subjects have become important topics in turbine blade design.In this article,firstaspects related to the aeroelastic(structural and aerodynamic)modeling of large wind turbine blades are summarized.Then,two main methods for blade vibration control are outlined(passive control and active control),including the case of composite blades.Some improvement schemes are proposed accordingly,with a specialfocus on the industry’s outstanding suppression scheme for stall-induced nonlinear flutter and a new high-frequencymicro-vibration control scheme.Finally,future research directions are indicated based on existingresearch.
基金support of the National Natural Science Foundation of China(No.12032012)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking controller,whose parameters are set using an Ant Colony OptimizationSlime Mould Algorithm(ACO-SMA).Initially,a nonlinear flight dynamics model of the helicopter is constructed.Observer gain functions and nonlinear feedback from a vibrational suppression function to improve the tracking performance of the controller,addressing issues in disturbance estimation and compensation of the Active Disturbance Rejection Control(ADRC).Simultaneously,a cascaded loop system,comprising an internal attitude loop and an external position loop,is created,and the ant colony-slime mold hybrid algorithm optimizes the system parameters of the trajectory tracking controller.Finally,helicopter trajectory tracking simulation experiments are conducted,including spiral ascending and“8”shape climbing maneuvers.The findings indicate that the ADRC employed for helicopter trajectory tracking exhibits outstanding performance in rejecting disturbances caused by gusts and accurately tracking trajectories.The trajectory tracking controller,whose parameters are optimized by the ACO-SMA,shows higher tracking precision compared to the conventional PID and ADRC,thereby substantially improving the precision of maneuver tasks.