We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for m...We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.展开更多
Based on the immersed boundary method (IBM) and the finite volume optimized pre-factored compact (FVOPC) scheme, a numerical simulation of noise propagation inside and outside the casing of a cross flow fan is est...Based on the immersed boundary method (IBM) and the finite volume optimized pre-factored compact (FVOPC) scheme, a numerical simulation of noise propagation inside and outside the casing of a cross flow fan is estab- lished. The unsteady linearized Euler equations are solved to directly simulate the aero-acoustic field. In order to validate the FVOPC scheme, a simulation case: one dimensional linear wave propagation problem is carried out using FVOPC scheme, DRP scheme and HOC scheme. The result of FVOPC is in good agreement with the ana- lytic solution and it is better than the results of DRP and HOC schemes, the FVOPC is less dispersion and dissi- pation than DRP and HOC schemes. Then, numerical simulation of noise propagation problems is performed. The noise field of 36 compact rotating noise sources is obtained with the rotating velocity of 1000r/min. The PML absorbing boundary condition is applied to the sound far field boundary condition for depressing the numerical reflection. Wall boundary condition is applied to the casing. The results show that there are reflections on the casing wall and sound wave interference in the field. The FVOPC with the IBM is suitable for noise propagation problems under the complex geometries for depressing the dispersion and dissipation, and also keeping the high order precision.展开更多
基金Project supported by the Natural Science Foundation of Jiangsu Province (Grant No.BK20220917)the National Natural Science Foundation of China (Grant Nos.12001213 and 12302035)。
文摘We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.
基金the university doctorate fund of China(Grant No.20060487036)the National Natural Science Foundation of China (Grant No.50676035)
文摘Based on the immersed boundary method (IBM) and the finite volume optimized pre-factored compact (FVOPC) scheme, a numerical simulation of noise propagation inside and outside the casing of a cross flow fan is estab- lished. The unsteady linearized Euler equations are solved to directly simulate the aero-acoustic field. In order to validate the FVOPC scheme, a simulation case: one dimensional linear wave propagation problem is carried out using FVOPC scheme, DRP scheme and HOC scheme. The result of FVOPC is in good agreement with the ana- lytic solution and it is better than the results of DRP and HOC schemes, the FVOPC is less dispersion and dissi- pation than DRP and HOC schemes. Then, numerical simulation of noise propagation problems is performed. The noise field of 36 compact rotating noise sources is obtained with the rotating velocity of 1000r/min. The PML absorbing boundary condition is applied to the sound far field boundary condition for depressing the numerical reflection. Wall boundary condition is applied to the casing. The results show that there are reflections on the casing wall and sound wave interference in the field. The FVOPC with the IBM is suitable for noise propagation problems under the complex geometries for depressing the dispersion and dissipation, and also keeping the high order precision.