This paper introduces a new way of prefix code translation. It helps to finish the whole translation by mapping once (only one comparison instruction is needed for getting the length of prefix code), and returns the o...This paper introduces a new way of prefix code translation. It helps to finish the whole translation by mapping once (only one comparison instruction is needed for getting the length of prefix code), and returns the original data and the length of prefix code element. The decoding time is only about four times as many as the time accessing original data directly.展开更多
In this pepar two necessary and sufficient conditions of the commutatively prefix codes are given. From this a family of commutatively prefix codes called every-layer-extensible codes have been found.
Wireless communication systems have greatly advanced during the last years. A significant contributor in these systems’ performance has been Orthogonal Frequency Division Multiplexing (OFDM). Since its invention, it ...Wireless communication systems have greatly advanced during the last years. A significant contributor in these systems’ performance has been Orthogonal Frequency Division Multiplexing (OFDM). Since its invention, it is considered to be a technological leap. This leap in splitting an information stream in multiple frequency carriers has been adapted by various scientists working on the development of wireless systems. Moreover, as OFDM presented excellent tolerance of channel fading and noise signals, the evolvement in terms of speed and reliability was consequent, because only a small stream of information is lost due to noise effects. OFDM along with the knowledge that Turbo codes is another excellent scheme of reducing BER, has triggered us to expand our research. So, we experimented in simulation level not only in joining OFDM with Turbo Codes but even in finding a better Turbo scheme compared to a typical PCCC, SCCC and a Convolutional encoder with Viterbi decoder. As the last goal has already been accomplished, in this paper is presented the new OFDM system consisted of our Turbo scheme. The analysis of the previous system took into consideration the effects of an AWGN channel. Also, this noise analysis was conducted using a simulation platform with specific attributes such as transmitting and receiving fixed number of subcarriers (2048 carriers after IFFT block) while using different types of convolutional concatenated codes, such as PCCC (Parallel), SCCC (Serial) and the new PCCC scheme. The results clearly show not only the improvement in the BER performance of the Turbo Coded OFDM systems (compared to others consisted of Viterbi decoders) but the overall superiority of the proposed design.展开更多
Peak to Average Power Ratio (PAPR) is defined as the instantaneous power (maximum value) to the average power ratio. PAPR is considered to be a major problem in OFDM systems. This problem can cause radical unexpected ...Peak to Average Power Ratio (PAPR) is defined as the instantaneous power (maximum value) to the average power ratio. PAPR is considered to be a major problem in OFDM systems. This problem can cause radical unexpected behavior of the signal fluctuation. This fluctuation is constituted by a large number of power states. The enormous number of these states leads to an additional complexity of ADCs and DACs. This research addresses the previous problem in OFDM systems utilizing Turbo Codes. μLaCP technique is employed for the purpose of decreasing PAPR. Moreover, our OFDM system was simulated in the presence of an AWGN channel with four types of codes (without the presence of ADCs and DACs). These were constituted of PCCC (typical and new), SCCC, and Convolutional Codes. Our Turbo Coded OFDM exhibited unchanged BER performance before and after the use of μLaCP technique. This was accomplished by modifying our previous PAPR reduction technique without sacrificing greatly its attributes.展开更多
文摘This paper introduces a new way of prefix code translation. It helps to finish the whole translation by mapping once (only one comparison instruction is needed for getting the length of prefix code), and returns the original data and the length of prefix code element. The decoding time is only about four times as many as the time accessing original data directly.
文摘In this pepar two necessary and sufficient conditions of the commutatively prefix codes are given. From this a family of commutatively prefix codes called every-layer-extensible codes have been found.
文摘Wireless communication systems have greatly advanced during the last years. A significant contributor in these systems’ performance has been Orthogonal Frequency Division Multiplexing (OFDM). Since its invention, it is considered to be a technological leap. This leap in splitting an information stream in multiple frequency carriers has been adapted by various scientists working on the development of wireless systems. Moreover, as OFDM presented excellent tolerance of channel fading and noise signals, the evolvement in terms of speed and reliability was consequent, because only a small stream of information is lost due to noise effects. OFDM along with the knowledge that Turbo codes is another excellent scheme of reducing BER, has triggered us to expand our research. So, we experimented in simulation level not only in joining OFDM with Turbo Codes but even in finding a better Turbo scheme compared to a typical PCCC, SCCC and a Convolutional encoder with Viterbi decoder. As the last goal has already been accomplished, in this paper is presented the new OFDM system consisted of our Turbo scheme. The analysis of the previous system took into consideration the effects of an AWGN channel. Also, this noise analysis was conducted using a simulation platform with specific attributes such as transmitting and receiving fixed number of subcarriers (2048 carriers after IFFT block) while using different types of convolutional concatenated codes, such as PCCC (Parallel), SCCC (Serial) and the new PCCC scheme. The results clearly show not only the improvement in the BER performance of the Turbo Coded OFDM systems (compared to others consisted of Viterbi decoders) but the overall superiority of the proposed design.
文摘Peak to Average Power Ratio (PAPR) is defined as the instantaneous power (maximum value) to the average power ratio. PAPR is considered to be a major problem in OFDM systems. This problem can cause radical unexpected behavior of the signal fluctuation. This fluctuation is constituted by a large number of power states. The enormous number of these states leads to an additional complexity of ADCs and DACs. This research addresses the previous problem in OFDM systems utilizing Turbo Codes. μLaCP technique is employed for the purpose of decreasing PAPR. Moreover, our OFDM system was simulated in the presence of an AWGN channel with four types of codes (without the presence of ADCs and DACs). These were constituted of PCCC (typical and new), SCCC, and Convolutional Codes. Our Turbo Coded OFDM exhibited unchanged BER performance before and after the use of μLaCP technique. This was accomplished by modifying our previous PAPR reduction technique without sacrificing greatly its attributes.
基金Supported by National Natural Science Foundation of China(11226038)Specialized Rearch Fund of Education Department of Shaanxi Provincial Government(11JK0499)