Background:Zearalenone(ZEA)is a resorcylic acid lactone derivative derived from various Fusarium species that are widely found in food and feeds.The molecular structure of ZEA resembles that of the mammalian hormone 1...Background:Zearalenone(ZEA)is a resorcylic acid lactone derivative derived from various Fusarium species that are widely found in food and feeds.The molecular structure of ZEA resembles that of the mammalian hormone 17β-oestradiol,thus zearalenone and its metabolites are known to compete with endogenous hormones for estrogen receptors binding sites and to activate transcription of oestrogen-responsive genes.However,the effect of long-term low-dose ZEA exposure on the reproductive response to Bacillus subtilis ANSB01G culture for first-parity gilts has not yet been investigated.This study was conducted to investigate the toxic effects of ZEA as an estrogen receptor selective modulator and the alleviating effects of Bacillus subtilis ANSB01G cultures as ZEA biodegraders in pregnant sows during their first parity.Results:A total of 80 first-parity gilts(Yorkshire×Landrace)were randomly assigned to four dietary treatments during gestation:CO(positive control);MO(negative control,246μg ZEA/kg diet);COA(CO+B.subtilis ANSB01G culture with 2×10^(9)CFU/kg diet);MOA(MO+B.subtilis ANSB01G culture with 2×10^(9)CFU/kg diet).There were 20 replications per treatment with one gilt per replicate.Feeding low-dose ZEA naturally contaminated diets disordered most of reproductive hormones secretion and affected estrogen receptor-αand estrogen receptor-βconcentrations in serum and specific organs and led to moderate histopathological changes of gilts,but did not cause significant detrimental effects on reproductive performance.The addition of Bacillus subtilis ANSB01G culture to the diet can effectively relieve the competence of ZEA to estrogen receptor and the disturbance of reproductive hormones secretion,and then ameliorate toxicosis of ZEA in gilts.Conclusions:Collectively,our study investigated the effects of feeding low-dose ZEA on reproduction in pregnant sows during their first parity.Feeding low-dose ZEA could modulate estrogen receptor-αand-βconcentrations in specific organs,cause disturbance of reproductive hormones and vulva swelling,and damage organ histopathology and up-regulate apoptosis in sow models.Diet with Bacillus subtilis ANSB01G alleviated negative effects of the ZEA on gilts to some extent.展开更多
A simple preparation using the ear tissue for PCR amplification was established for diagnosis of genotypes for halothane in 181 sows.3 halothane heterozygous pigs were detected.The behaviors of the sows that have diff...A simple preparation using the ear tissue for PCR amplification was established for diagnosis of genotypes for halothane in 181 sows.3 halothane heterozygous pigs were detected.The behaviors of the sows that have different genotypes were observed.The heterozygous sows expressed seem more behavioral stereotypies than halothane resistant.But there is no difference in two genotypes.The behaviour directed trough in heterozygous sows is higher than halothane resistant.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 31772637, 31301981)a Special Fund for Agro-scientific Research in the Public Interest (201403047)
文摘Background:Zearalenone(ZEA)is a resorcylic acid lactone derivative derived from various Fusarium species that are widely found in food and feeds.The molecular structure of ZEA resembles that of the mammalian hormone 17β-oestradiol,thus zearalenone and its metabolites are known to compete with endogenous hormones for estrogen receptors binding sites and to activate transcription of oestrogen-responsive genes.However,the effect of long-term low-dose ZEA exposure on the reproductive response to Bacillus subtilis ANSB01G culture for first-parity gilts has not yet been investigated.This study was conducted to investigate the toxic effects of ZEA as an estrogen receptor selective modulator and the alleviating effects of Bacillus subtilis ANSB01G cultures as ZEA biodegraders in pregnant sows during their first parity.Results:A total of 80 first-parity gilts(Yorkshire×Landrace)were randomly assigned to four dietary treatments during gestation:CO(positive control);MO(negative control,246μg ZEA/kg diet);COA(CO+B.subtilis ANSB01G culture with 2×10^(9)CFU/kg diet);MOA(MO+B.subtilis ANSB01G culture with 2×10^(9)CFU/kg diet).There were 20 replications per treatment with one gilt per replicate.Feeding low-dose ZEA naturally contaminated diets disordered most of reproductive hormones secretion and affected estrogen receptor-αand estrogen receptor-βconcentrations in serum and specific organs and led to moderate histopathological changes of gilts,but did not cause significant detrimental effects on reproductive performance.The addition of Bacillus subtilis ANSB01G culture to the diet can effectively relieve the competence of ZEA to estrogen receptor and the disturbance of reproductive hormones secretion,and then ameliorate toxicosis of ZEA in gilts.Conclusions:Collectively,our study investigated the effects of feeding low-dose ZEA on reproduction in pregnant sows during their first parity.Feeding low-dose ZEA could modulate estrogen receptor-αand-βconcentrations in specific organs,cause disturbance of reproductive hormones and vulva swelling,and damage organ histopathology and up-regulate apoptosis in sow models.Diet with Bacillus subtilis ANSB01G alleviated negative effects of the ZEA on gilts to some extent.
文摘A simple preparation using the ear tissue for PCR amplification was established for diagnosis of genotypes for halothane in 181 sows.3 halothane heterozygous pigs were detected.The behaviors of the sows that have different genotypes were observed.The heterozygous sows expressed seem more behavioral stereotypies than halothane resistant.But there is no difference in two genotypes.The behaviour directed trough in heterozygous sows is higher than halothane resistant.