With the accelerated pace of life and the demand for dietary diversification,more and more people begin to pay attention to the convenience and health of diet,and the prepared dishes market is getting more and more at...With the accelerated pace of life and the demand for dietary diversification,more and more people begin to pay attention to the convenience and health of diet,and the prepared dishes market is getting more and more attention and favor because of its characteristics of convenient and quick.In order to understand the acceptance of college students' to the prepared dishes market,this paper aimed to collect college students' views and suggestions on the prepared dishes market by means of a questionnaire survey.By analyzing the results of the survey,we found that college students' generally have a positive attitude towards prepared dishes markets,and they believe that prepared dishes provides convenient,fast and diversified dietary choices.However,some college students' have some concerns about the quality and food safety of the prepared dishes market,such as adding too many food additives and preservatives.Through the research on college students' acceptance of the prepared dishes market,we can reveal the demand and potential problems of college students' for the prepared dishes market from the consumer s point of view,so as to provide a reference for the future development of the prepared dishes market.展开更多
[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18...[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18℃.The volatile flavor compounds of prepared pork were determined by solid-phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS)at days 0,7,14,21 and 28,and relative odor activity value(OAV),principal component analysis(PCA)and cluster analysis(CA)were combined to analyze changes in volatile flavor compounds of prepared pork during storage.[Results]The total number of volatile flavor compounds gradually decreased with the prolongation of the storage period,and OAV analysis identified 22 key flavor compounds(OAV≥1).The results of PCA and CA showed that 2-methyl-1-butanol,1-octen-3-ol,linalool,cineole,hexanal and nonanal were the main key flavor components,and the degree of flavor degradation was low under both superchilling and freezing conditions.After 28 days of storage,the alcohol content in the chilling group was significantly higher than other two groups,and the overall content of volatile flavor compounds was also significantly higher than other two groups,indicating that the-4℃chilling storage was more favorable for maintaining the overall flavor of prepared pork.[Conclusions]This study provides a theoretical basis for finding a better storage method for prepared meat products.展开更多
Sulfated zirconia-lanthana (SO4^2-/ZrO2-La2O3) precursors were prepared by ultrasonic coprecipitation method and followed by aging at different temperature. The precursors were treated by 0.5 mol/L H2SO4. Samples of...Sulfated zirconia-lanthana (SO4^2-/ZrO2-La2O3) precursors were prepared by ultrasonic coprecipitation method and followed by aging at different temperature. The precursors were treated by 0.5 mol/L H2SO4. Samples of SO4^2-/ZrO2-La2O3 nano-crystalline catalysts were obtained by baking the treated precursors at different temperatures. The acidic properties of SO4^2-/ZrO2-La2O3 were tested by the Hammett indicator method. The phase composition, specific area, particle structure, and surface state were characterized by X-ray diffraction, BET, transmission electron microscopy, infrared spectrum, and X-ray photoelectron spec- troscopy. The catalytic activities were estimated by esterification of acetic acid with glycerin. It was shown that the catalyst prepared by ultrasonic stirring and low temperature (-15 ℃) exhibited highly active sites and high catalytic property.展开更多
Al2O3 dispersion copper alloy powder was prepared by intemal oxidation, and three consolidation methods--high-velocity compaction (HVC), hot pressing (HP), and hot extrusion (HE)--were used to prepare Al2O3 disp...Al2O3 dispersion copper alloy powder was prepared by intemal oxidation, and three consolidation methods--high-velocity compaction (HVC), hot pressing (HP), and hot extrusion (HE)--were used to prepare Al2O3 dispersion-strengthened copper (Cu-Al2O3) alloys. The microstructures and properties of these alloys were investigated and compared. The results show that the alloys prepared by the HP and HE methods exhibited the coarsest and finest grain sizes, respectively. The alloy prepared by the HVC method exhibited the lowest relative density (98.3% vs. 99.5% for HP and 100% for HE), which resulted in the lowest electrical conductivity (81% IACS vs. 86% IACS for HP and 87% IACS for HE). However, this alloy also exhibited the highest hardness (77 HRB vs. 69 HRB for HP and 70 HRB for HE), the highest compressive strength (443 MPa vs. 386 MPa for I/P and 378 MPa for HE), and the best hardness retention among the investigated alloys. The results illustrate that the alloy prepared by the HVC method exhibits high softening temperature and good mechanical properties at high temperatures, which imply long service life when used as spot-welding electrodes.展开更多
Selenium nanoparticles were prepared by a reverse microemulsion system. Sodium selenosulfate was used as selenium source. The results showed that hydrochloric acid concentration and reaction temperature had great infl...Selenium nanoparticles were prepared by a reverse microemulsion system. Sodium selenosulfate was used as selenium source. The results showed that hydrochloric acid concentration and reaction temperature had great influence on the morphology of products. The crystalline selenium nanowires and amorphous selenium nanorods were obtained in given condition.展开更多
Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spec...Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spectroscope,and N2 adsorption-desorption.Their application in the single-step synthesis of dimethyl ether from syngas was also investigated.The results indicate that the type of heat treatment atmosphere has an influence on the Cu species and the Cu0/Cu+ ratio on the catalyst surface.Moreover,the final Cu/Zn ratio on the catalyst surface is mainly dependent on the composition and reaction environment of the catalyst and less on the type of heat treatment atmosphere.The prepared catalysts can suppress sintering of active sites at high temperatures,and the type of heat treatment atmosphere mainly affects the capability of the catalyst for methanol synthesis.The catalysts perform best using N2 as the heat treatment atmosphere.展开更多
A fibrous sorbent possessing abundant micropore structure was firstly prepared via post-crosslinking reaction on the PP-ST-DVB original fiber. Its micromorphology and sorptive properties were investigated, and the res...A fibrous sorbent possessing abundant micropore structure was firstly prepared via post-crosslinking reaction on the PP-ST-DVB original fiber. Its micromorphology and sorptive properties were investigated, and the results demonstrated that the novel fibrous hypererosslinked sorbent has narrow pore-size distribution, small average porous radius (1.90 nm), high specific surface area (362.31 m^2/g), and fine sorptive properties for small organic molecules.展开更多
Na-W-Mn-Zr-S-P/SiO2 catalysts for oxidative coupling of methane (OCM) were prepared by incipient wetness impregnation, sol-gel and mixture slurry methods. The catalyst prepared by mixture slurry method showed the be...Na-W-Mn-Zr-S-P/SiO2 catalysts for oxidative coupling of methane (OCM) were prepared by incipient wetness impregnation, sol-gel and mixture slurry methods. The catalyst prepared by mixture slurry method showed the best catalytic performance among all samples. In addition, the effects of different addition sequences of Na, W, Mn, Zr, S and P on the catalytic performance were studied. The absence of Na before the addition of Mn and Zr in the catalysts preparation depressed the formation of the active phases of Mn2O3 and ZrO2 and decreased the activities of the catalysts significantly.展开更多
Using the specially designed mechanochemical ball-mill equipment, ultramicro molybdenum nitride powders were prepared from pure molybdenum powders in ammonia atmosphere at room temperature by high-energy ball milling....Using the specially designed mechanochemical ball-mill equipment, ultramicro molybdenum nitride powders were prepared from pure molybdenum powders in ammonia atmosphere at room temperature by high-energy ball milling. The structure and the particle size of the powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the mass ratio of grinding media to powder was 8:1, after milling for 30 h the Mo2N of fcc structure was obtained, and the average particle size of the powders was around 100 nm. It is found that the chemisorption of ammonia onto the fresh molybdenum surfaces created by milling was the predominant process during solid-gas reaction, and the energy input due to introduction of highly dense grain boundaries and lattice defects offered the activation energy for the transition from Mo-N chemisorption to molybdenum nitride. In addition, the change of Mo electronic undersaturation induced by the grain refining accelerated the bonding between Mo and N. The mechanism model of whole nitriding reaction was given, During the high-energy ball milling processing, the rotational speed of milling played a critical role in determining the overall reaction speed.展开更多
Amorphous phosphor 1.4YeO3·2.5Al2O3·0.1Tb2O3 (the same composition as Y2.8Tb0.2Al5O12) was prepared via a sol-gel method at relatively low temperature (i.e., below 650℃), which is much lower than that f...Amorphous phosphor 1.4YeO3·2.5Al2O3·0.1Tb2O3 (the same composition as Y2.8Tb0.2Al5O12) was prepared via a sol-gel method at relatively low temperature (i.e., below 650℃), which is much lower than that for the preparation of polycrystalline Y3Al5O12:Tb^3+ (above 1400℃). The amorphous phosphor prepared in the optimized conditions showed a bright green-yellowish luminescence, the intensity of which was comparable with that of polycrystalline sample and the emissions of which were assigned to 5D4 → 7Fj transitions of Tb^3+. Besides the emissions of Tb^3+, the amorphous samples prepared at temperatures below 500 ℃ presented a weak blue emission band around 420 nm.展开更多
Objective: To investigate the effect of prepared rhubarb on insulin resistance in patients with pregnancy induced hypertension (PIH) and its mechanism. Methods: All the 92 patients accepted 75 g oral glucose tolerance...Objective: To investigate the effect of prepared rhubarb on insulin resistance in patients with pregnancy induced hypertension (PIH) and its mechanism. Methods: All the 92 patients accepted 75 g oral glucose tolerance test (OGTT) and insulin release test before and after treatment. These patients were divided into two groups (treated group and control group). Prepared rhubarb and nifedipine were given to the treated group, while nifedipine was given to the control group alone. Circulating endothelial cell (CEC), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) were measured and glucose area under curve (GAUC), insulin area under curve (IAUC), insulin sensitivity index (ISI) were calculated. And 30 normal pregnant women were selected as the healthy group. Results: CEC, TNF-a, IL-6, GAUC and IAUC of PIH patients were significantly higher than those of the normal healthy group; while ISI of PIH patients was significantly lower than that of the healthy group. ISI was significantly negatively correlated to CEC, TNF-a and IL-6. After treatment, CEC, TNF-α, IL-6, GAUC decreased and ISI increased significantly in the treated group; while in the control group, all above-mentioned parameters showed no change. Conclusion: Prepared rhubarb can improve insulin resistance of PIH by reducing vascular endothelial cell's damage.展开更多
A series of Li4Ti5O12 materials were prepared by three different methods: solvothermal, sol-gel, and solid-state reaction methods. Phase composition, morphology, and particle sizes of the samples were studied by powd...A series of Li4Ti5O12 materials were prepared by three different methods: solvothermal, sol-gel, and solid-state reaction methods. Phase composition, morphology, and particle sizes of the samples were studied by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical properties of the samples were investigated by charge-discharge tests. It is demonstrated that both sol-gel and solid-state reaction methods provided good control over the chemical composition and microstructure of the active material, in which sol-gel method yielded a fine Li4Ti5O12 spinel having an initial specific capacity of 146 mAh g-1 and low capacity fade during cycling. Comparatively, the solid-state method is simple and promising to prepare Li4Ti5O12 for commercial applications.展开更多
Walnut-shellactivated carbons(WSACs)were prepared by the KOH chemicalactivation.The effects of carbonization temperature,activation temperature,and ratio of KOH to chars on the pore development of WSACs were investi...Walnut-shellactivated carbons(WSACs)were prepared by the KOH chemicalactivation.The effects of carbonization temperature,activation temperature,and ratio of KOH to chars on the pore development of WSACs were investigated.Fourier transform infrared spectroscopy(FTIR),X-ray powder diffraction(XRD),and scanning electron microscopy(SEM)were employed to characterize the microstructure and morphology of WSACs.Methanoladsorption performance onto the optimalWSAC and the coal-based AC were also investigated.The results show that the optimalpreparation conditions are a carbonization temperature of 700 ℃,an activation temperature of 700 ℃,and a mass ratio of 3.The BET surface area,the micropore volume,and the micropore volume percentage of the optimalWASC are 1636 m^2/g,0.641 cm^3/g and 81.97%,respectively.There are a lot of micropores and a certain amount of meso-and macropores.The characteristics of the amorphous state are identified.The results show that the optimalWSAC is favorable for methanoladsorption.The equilibrium adsorption capacity of the optimalWSAC is 248.02mg/g.It is shown that the equilibrium adsorption capacity of the optimalWSAC is almost equivalent to that of the common activated carbon.Therefore the optimalWSAC could be a potentialadsorbent for the solar energy adsorption refrigeration cycle.展开更多
Nanocrystalline CeO2 powders (particle size ≈10-15 nm), doped with up to 20 at.-% of Mg,Ca or Y were prepared by chemical precipitation under hydrothermal conditions. The particle size and shape of the powders change...Nanocrystalline CeO2 powders (particle size ≈10-15 nm), doped with up to 20 at.-% of Mg,Ca or Y were prepared by chemical precipitation under hydrothermal conditions. The particle size and shape of the powders change slightly with the dopant concentrations. The the of the dopants on the sintering of the compacted powders was investigated during heating at a constant rate of 10℃/min. The elemental composition and the concentration of the dopant has significant efFect on the densification and grain growth. Compared to undoped CeO2, the dopants produce a shift in the densification curve to higher temperatures. For the same dopant concentration and under identical sintering conditions, the Ca doped samples reach nearly full density with the smallest grain size (≈50 nm), however, the Mg doped sample has the lowest density (≈95% of the theoretical) with the largest grain size (≈1 μm)展开更多
Rapidly solidified 2024 aluminium alloy powders were mechanically milled, then consolidated to bulk form. The microstructural changes of the powders in mechanical milling (MM) and consolidation process were characteri...Rapidly solidified 2024 aluminium alloy powders were mechanically milled, then consolidated to bulk form. The microstructural changes of the powders in mechanical milling (MM) and consolidation process were characterized by X-ray diffraction analyses and transmission electron microscopy observations. The results showed that mechanical milling reduced the grain size to nanometer, dissolved the Al2Cu intermetallic compound into the aluminium matrix and produced an aluminium supersaturated solid solution. During consolidation process. the grain size increased to submicrometer, and the Al2Cu and Al2(Cu, Mg, Si, Fe, Mn) compounds precipitated owing to heating. Increasing consolidation temperature and time results in obvious grain growth and coarsening of second phase particles. The tensile yield strength of the consolidated alloy with submicrometer size grains increases with decreasing grain size, and it follows the famous HallPetch relation展开更多
The comparative study of the tensile plastic deformation of nano(n)-TiO2 ceramic prepared byphysical gas condensation (P) and chemical hydrolysis precipitation (C) methods was conductedby a gas pressure forming techni...The comparative study of the tensile plastic deformation of nano(n)-TiO2 ceramic prepared byphysical gas condensation (P) and chemical hydrolysis precipitation (C) methods was conductedby a gas pressure forming technique at 750~800℃. The results show that n-TiO2 (P) possessesexcellent property of tensile pIastic deformation comparing with n-TiO2(C). The reason for thisis attributed to the surface cleanness and soft agglomeration of n-TiO2 (P) particfe prepared inreIatively cIean vacuum condition.展开更多
Gas drainage is an efective technology for gas control in coal mines.A high borehole-sealing quality is the fundamental precondition for efcient gas drainage.The expansibilities of cement pastes used in borehole-seali...Gas drainage is an efective technology for gas control in coal mines.A high borehole-sealing quality is the fundamental precondition for efcient gas drainage.The expansibilities of cement pastes used in borehole-sealing processes are critical for the borehole-sealing efect.Nanosized magnesia expansive agents are used to improve the expansibilities of cement pastes and improve the borehole-sealing efect.Nuclear magnetic resonance spectrometry and scanning electron microscopy were adopted to study the efects of nanosized magnesia on the hydration of borehole-sealing cements used with diferent preparation methods.The results showed that an increase in the mass fraction of the nanosized magnesia promoted cement hydration,and the mass fraction was positively correlated with the promotion efect.The use of diferent preparation methods did not change the water-phase distribution in the cement.When using the wet-mixing preparation method,nanosized magnesia promoted the induction,acceleration,and deceleration periods of hydration;when using the dry-mixing preparation method,the nanosized magnesia promoted the induction period of cement hydration,and the promotion efect was less obvious than that seen when using the wet-mixing method.When using the wet-mixing preparation method,the nanosized magnesia was uniformly dispersed,thus enlarging the surface area of the reaction,which provided more nucleation sites for the hydration products of the cement and therefore accelerated the hydration reaction.When using the dry-mixing preparation method,the nanosized magnesia powders were dispersed nonuniformly and aggregated.Under these conditions,only a few nanosized magnesia particles on the surfaces of the aggregated clusters took part in hydration,so only a small number of nucleation sites were provided for the hydration products of cement.This led to inconsistent hydration of cement pastes prepared using the dry-mixing method.The surface porosity of the cement prepared with the wet-mixing preparation method frst decreased and then increased with increases in the mass fraction of the nanosized magnesia.The cement surface exhibited compact hydration products and few pores,and the surface was relatively smooth.In comparison,the surface porosity of the cement prepared using the dry-mixing method fuctuated with increasing mass fraction of the nanosized magnesia,resulting in a rough cement surface and microfractures on some surfaces.The two preparation methods both reduced the surface porosity of the cement.The wet-mixing preparation was more efective and consistent in improving the compactness of the cement than the dry-mixing preparation.These results provide important guidance on the addition of nanosized magnesia in borehole-sealing engineering and the selection of cement preparation methods,and they also lay a solid foundation for realizing safe and efcient gas drainage.展开更多
Reaction-milled NiAl-TiB2 composite was fabricated by mechanical alloying elemental powders and hot pressing. TiB2 particles are distributed mostly in grain boundaries of the matrix. The compressive strain to failure ...Reaction-milled NiAl-TiB2 composite was fabricated by mechanical alloying elemental powders and hot pressing. TiB2 particles are distributed mostly in grain boundaries of the matrix. The compressive strain to failure of the composite at RT is about twice that of cast NiAl. The compressive yield stress at high temperatures is about 4.5 times higher than that of extruded NiAl, and is also much stronger than XD NiAl-TiB2 composites. Deformation behavior between 1000~1100℃ with different strain rates has been investigated展开更多
Tb0.3Dy0.TFe1.95 alloys are solidified under various high magnetic field conditions. The influence of a high magnetic field on the crystal orientation, morphology and magnetostriction of the alloys are studied. The re...Tb0.3Dy0.TFe1.95 alloys are solidified under various high magnetic field conditions. The influence of a high magnetic field on the crystal orientation, morphology and magnetostriction of the alloys are studied. The results show that with the increase of magnetic flux density, the crystal orientation of the (Tb,Dy)Fe2 phase changed from (113) to (111) direction; the grains in the alloys tended to align along the magnetic field direction; and the magnetostriction of Tb0.3Dy0.7Fe1.95 alloys is remarkably improved. The change in magnetostriction of Tb0.3Dy0.TFe1.95 alloys is linked to the amount and the crystal orientation behavior of the (Tb,Dy)Fe2 phase.展开更多
FeTi_1-O_2(= 0.00,0.05,0.10) nanocomposites are synthesized using a sol-gel method involving an ethanol solvent in the presence of ethylene glycol as the stabilizer,and acetic acid as the chemical reagent.Their stru...FeTi_1-O_2(= 0.00,0.05,0.10) nanocomposites are synthesized using a sol-gel method involving an ethanol solvent in the presence of ethylene glycol as the stabilizer,and acetic acid as the chemical reagent.Their structural and optical analyses are studied to reveal their physicochemical properties.Using the x-ray diffractometer(XRD)analysis,the size of the nanoparticles(NPs) is found to be 18-32 nm,where the size of the NPs decreases down to 18 nm when Fe impurity of up to 10% is added,whereas their structure remains unchanged.The results also indicate that the structure of the NPs is tetragonal in the anatase phase.The Fourier transform infrared spectroscopy analysis suggests the presence of a vibration bond(Ti-O) in the sample.The photoluminescence analysis indicates that the diffusion of Fe^(3+) ions into the TiO_2 matrix results in a decreasing electron-hole recombination,and increases the photocatalytic properties,where the best efficiency appears at an impurity of10%.The UV-diffuse reflection spectroscopy analysis indicates that with the elevation of iron impurity,the band gap value decreases from 3.47 eV for the pure sample to 2.95 eV for the 10 mol% Fe-doped TiO_2 NPs.展开更多
基金Supported by Sichuan Science and Technology Program(2023YFN0056)A Ba Science and Technology Program(R23CGZH0004)Open Fund Project of Key Laboratory of Meat Processing of Sichuan Province(21-R-42).
文摘With the accelerated pace of life and the demand for dietary diversification,more and more people begin to pay attention to the convenience and health of diet,and the prepared dishes market is getting more and more attention and favor because of its characteristics of convenient and quick.In order to understand the acceptance of college students' to the prepared dishes market,this paper aimed to collect college students' views and suggestions on the prepared dishes market by means of a questionnaire survey.By analyzing the results of the survey,we found that college students' generally have a positive attitude towards prepared dishes markets,and they believe that prepared dishes provides convenient,fast and diversified dietary choices.However,some college students' have some concerns about the quality and food safety of the prepared dishes market,such as adding too many food additives and preservatives.Through the research on college students' acceptance of the prepared dishes market,we can reveal the demand and potential problems of college students' for the prepared dishes market from the consumer s point of view,so as to provide a reference for the future development of the prepared dishes market.
基金Supported by Science and Technology Achievement Transformation Program of Sichuan Province(2023ZHCG0079)Research and Application of Key Techniques for Industrialization of Frozen Prepared Meat Dishes(GCZX22-35)Sichuan Pig Innovation Team of National Agricultural Industry Technology System(scsztd-2024-08-07).
文摘[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18℃.The volatile flavor compounds of prepared pork were determined by solid-phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS)at days 0,7,14,21 and 28,and relative odor activity value(OAV),principal component analysis(PCA)and cluster analysis(CA)were combined to analyze changes in volatile flavor compounds of prepared pork during storage.[Results]The total number of volatile flavor compounds gradually decreased with the prolongation of the storage period,and OAV analysis identified 22 key flavor compounds(OAV≥1).The results of PCA and CA showed that 2-methyl-1-butanol,1-octen-3-ol,linalool,cineole,hexanal and nonanal were the main key flavor components,and the degree of flavor degradation was low under both superchilling and freezing conditions.After 28 days of storage,the alcohol content in the chilling group was significantly higher than other two groups,and the overall content of volatile flavor compounds was also significantly higher than other two groups,indicating that the-4℃chilling storage was more favorable for maintaining the overall flavor of prepared pork.[Conclusions]This study provides a theoretical basis for finding a better storage method for prepared meat products.
文摘Sulfated zirconia-lanthana (SO4^2-/ZrO2-La2O3) precursors were prepared by ultrasonic coprecipitation method and followed by aging at different temperature. The precursors were treated by 0.5 mol/L H2SO4. Samples of SO4^2-/ZrO2-La2O3 nano-crystalline catalysts were obtained by baking the treated precursors at different temperatures. The acidic properties of SO4^2-/ZrO2-La2O3 were tested by the Hammett indicator method. The phase composition, specific area, particle structure, and surface state were characterized by X-ray diffraction, BET, transmission electron microscopy, infrared spectrum, and X-ray photoelectron spec- troscopy. The catalytic activities were estimated by esterification of acetic acid with glycerin. It was shown that the catalyst prepared by ultrasonic stirring and low temperature (-15 ℃) exhibited highly active sites and high catalytic property.
基金financially supported by Guangdong Provincial Industrial High-tech Project (No. 2015A010105020)Guangzhou Science & Technology New Star of Pearl River Project (No. 2012J2200096)+3 种基金the Open Research Fund of State Key Laboratory of Powder Metallurgy of Central South UniversityGuangdong Provincial Innovation Ability Construction Project (No. 2016B070701024)Guangzhou Innovation Platform Construction and Sharing Project (No. 201509010003)Guangdong Provincial Science & Technology Basic Condition Construction Field Project (No. 2014B030301012)
文摘Al2O3 dispersion copper alloy powder was prepared by intemal oxidation, and three consolidation methods--high-velocity compaction (HVC), hot pressing (HP), and hot extrusion (HE)--were used to prepare Al2O3 dispersion-strengthened copper (Cu-Al2O3) alloys. The microstructures and properties of these alloys were investigated and compared. The results show that the alloys prepared by the HP and HE methods exhibited the coarsest and finest grain sizes, respectively. The alloy prepared by the HVC method exhibited the lowest relative density (98.3% vs. 99.5% for HP and 100% for HE), which resulted in the lowest electrical conductivity (81% IACS vs. 86% IACS for HP and 87% IACS for HE). However, this alloy also exhibited the highest hardness (77 HRB vs. 69 HRB for HP and 70 HRB for HE), the highest compressive strength (443 MPa vs. 386 MPa for I/P and 378 MPa for HE), and the best hardness retention among the investigated alloys. The results illustrate that the alloy prepared by the HVC method exhibits high softening temperature and good mechanical properties at high temperatures, which imply long service life when used as spot-welding electrodes.
文摘Selenium nanoparticles were prepared by a reverse microemulsion system. Sodium selenosulfate was used as selenium source. The results showed that hydrochloric acid concentration and reaction temperature had great influence on the morphology of products. The crystalline selenium nanowires and amorphous selenium nanorods were obtained in given condition.
基金supported by the National Natural Science Foundation of China(No.20706039)the National Basic Research Program(973 Program) of China (No.2005CB221204)+1 种基金the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi of China in 2010the Young Scientific and the Technical Fund of Shanxi of China (No.2006021010)
文摘Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spectroscope,and N2 adsorption-desorption.Their application in the single-step synthesis of dimethyl ether from syngas was also investigated.The results indicate that the type of heat treatment atmosphere has an influence on the Cu species and the Cu0/Cu+ ratio on the catalyst surface.Moreover,the final Cu/Zn ratio on the catalyst surface is mainly dependent on the composition and reaction environment of the catalyst and less on the type of heat treatment atmosphere.The prepared catalysts can suppress sintering of active sites at high temperatures,and the type of heat treatment atmosphere mainly affects the capability of the catalyst for methanol synthesis.The catalysts perform best using N2 as the heat treatment atmosphere.
基金The authors are grateful for the support of the National Natural Science Foundation of China (No. 20574063).
文摘A fibrous sorbent possessing abundant micropore structure was firstly prepared via post-crosslinking reaction on the PP-ST-DVB original fiber. Its micromorphology and sorptive properties were investigated, and the results demonstrated that the novel fibrous hypererosslinked sorbent has narrow pore-size distribution, small average porous radius (1.90 nm), high specific surface area (362.31 m^2/g), and fine sorptive properties for small organic molecules.
基金supported by the financial support from National Natural Science Foundation of China (20676116)
文摘Na-W-Mn-Zr-S-P/SiO2 catalysts for oxidative coupling of methane (OCM) were prepared by incipient wetness impregnation, sol-gel and mixture slurry methods. The catalyst prepared by mixture slurry method showed the best catalytic performance among all samples. In addition, the effects of different addition sequences of Na, W, Mn, Zr, S and P on the catalytic performance were studied. The absence of Na before the addition of Mn and Zr in the catalysts preparation depressed the formation of the active phases of Mn2O3 and ZrO2 and decreased the activities of the catalysts significantly.
文摘Using the specially designed mechanochemical ball-mill equipment, ultramicro molybdenum nitride powders were prepared from pure molybdenum powders in ammonia atmosphere at room temperature by high-energy ball milling. The structure and the particle size of the powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the mass ratio of grinding media to powder was 8:1, after milling for 30 h the Mo2N of fcc structure was obtained, and the average particle size of the powders was around 100 nm. It is found that the chemisorption of ammonia onto the fresh molybdenum surfaces created by milling was the predominant process during solid-gas reaction, and the energy input due to introduction of highly dense grain boundaries and lattice defects offered the activation energy for the transition from Mo-N chemisorption to molybdenum nitride. In addition, the change of Mo electronic undersaturation induced by the grain refining accelerated the bonding between Mo and N. The mechanism model of whole nitriding reaction was given, During the high-energy ball milling processing, the rotational speed of milling played a critical role in determining the overall reaction speed.
基金Project supported by the State Key Program for Basic Research of China (G1998061306)the National Natural Science Foundation of China (20221101, 20423005)Peking University National Visiting Graduate Student Program
文摘Amorphous phosphor 1.4YeO3·2.5Al2O3·0.1Tb2O3 (the same composition as Y2.8Tb0.2Al5O12) was prepared via a sol-gel method at relatively low temperature (i.e., below 650℃), which is much lower than that for the preparation of polycrystalline Y3Al5O12:Tb^3+ (above 1400℃). The amorphous phosphor prepared in the optimized conditions showed a bright green-yellowish luminescence, the intensity of which was comparable with that of polycrystalline sample and the emissions of which were assigned to 5D4 → 7Fj transitions of Tb^3+. Besides the emissions of Tb^3+, the amorphous samples prepared at temperatures below 500 ℃ presented a weak blue emission band around 420 nm.
文摘Objective: To investigate the effect of prepared rhubarb on insulin resistance in patients with pregnancy induced hypertension (PIH) and its mechanism. Methods: All the 92 patients accepted 75 g oral glucose tolerance test (OGTT) and insulin release test before and after treatment. These patients were divided into two groups (treated group and control group). Prepared rhubarb and nifedipine were given to the treated group, while nifedipine was given to the control group alone. Circulating endothelial cell (CEC), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) were measured and glucose area under curve (GAUC), insulin area under curve (IAUC), insulin sensitivity index (ISI) were calculated. And 30 normal pregnant women were selected as the healthy group. Results: CEC, TNF-a, IL-6, GAUC and IAUC of PIH patients were significantly higher than those of the normal healthy group; while ISI of PIH patients was significantly lower than that of the healthy group. ISI was significantly negatively correlated to CEC, TNF-a and IL-6. After treatment, CEC, TNF-α, IL-6, GAUC decreased and ISI increased significantly in the treated group; while in the control group, all above-mentioned parameters showed no change. Conclusion: Prepared rhubarb can improve insulin resistance of PIH by reducing vascular endothelial cell's damage.
基金financially supported by NNSFC (No. 20773132, 20771101, 20831004)National Basic Research Program of China (No.2009CB939801)+1 种基金the Knowledge Innovation Program of the Chinese Academy of SciencesFJIRSM Key Program (No. SZD-09003-1)
文摘A series of Li4Ti5O12 materials were prepared by three different methods: solvothermal, sol-gel, and solid-state reaction methods. Phase composition, morphology, and particle sizes of the samples were studied by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical properties of the samples were investigated by charge-discharge tests. It is demonstrated that both sol-gel and solid-state reaction methods provided good control over the chemical composition and microstructure of the active material, in which sol-gel method yielded a fine Li4Ti5O12 spinel having an initial specific capacity of 146 mAh g-1 and low capacity fade during cycling. Comparatively, the solid-state method is simple and promising to prepare Li4Ti5O12 for commercial applications.
基金Funded by the National Natural Science Foundation of China(Nos.U1137605,51366014,51466017,and 51566017)the General Program of Yunnan Provincial Applied Fundamental Research(No.2011FZ076)the Scientific Research Training Foundation of Undergraduate(No.ky2014-179)
文摘Walnut-shellactivated carbons(WSACs)were prepared by the KOH chemicalactivation.The effects of carbonization temperature,activation temperature,and ratio of KOH to chars on the pore development of WSACs were investigated.Fourier transform infrared spectroscopy(FTIR),X-ray powder diffraction(XRD),and scanning electron microscopy(SEM)were employed to characterize the microstructure and morphology of WSACs.Methanoladsorption performance onto the optimalWSAC and the coal-based AC were also investigated.The results show that the optimalpreparation conditions are a carbonization temperature of 700 ℃,an activation temperature of 700 ℃,and a mass ratio of 3.The BET surface area,the micropore volume,and the micropore volume percentage of the optimalWASC are 1636 m^2/g,0.641 cm^3/g and 81.97%,respectively.There are a lot of micropores and a certain amount of meso-and macropores.The characteristics of the amorphous state are identified.The results show that the optimalWSAC is favorable for methanoladsorption.The equilibrium adsorption capacity of the optimalWSAC is 248.02mg/g.It is shown that the equilibrium adsorption capacity of the optimalWSAC is almost equivalent to that of the common activated carbon.Therefore the optimalWSAC could be a potentialadsorbent for the solar energy adsorption refrigeration cycle.
文摘Nanocrystalline CeO2 powders (particle size ≈10-15 nm), doped with up to 20 at.-% of Mg,Ca or Y were prepared by chemical precipitation under hydrothermal conditions. The particle size and shape of the powders change slightly with the dopant concentrations. The the of the dopants on the sintering of the compacted powders was investigated during heating at a constant rate of 10℃/min. The elemental composition and the concentration of the dopant has significant efFect on the densification and grain growth. Compared to undoped CeO2, the dopants produce a shift in the densification curve to higher temperatures. For the same dopant concentration and under identical sintering conditions, the Ca doped samples reach nearly full density with the smallest grain size (≈50 nm), however, the Mg doped sample has the lowest density (≈95% of the theoretical) with the largest grain size (≈1 μm)
文摘Rapidly solidified 2024 aluminium alloy powders were mechanically milled, then consolidated to bulk form. The microstructural changes of the powders in mechanical milling (MM) and consolidation process were characterized by X-ray diffraction analyses and transmission electron microscopy observations. The results showed that mechanical milling reduced the grain size to nanometer, dissolved the Al2Cu intermetallic compound into the aluminium matrix and produced an aluminium supersaturated solid solution. During consolidation process. the grain size increased to submicrometer, and the Al2Cu and Al2(Cu, Mg, Si, Fe, Mn) compounds precipitated owing to heating. Increasing consolidation temperature and time results in obvious grain growth and coarsening of second phase particles. The tensile yield strength of the consolidated alloy with submicrometer size grains increases with decreasing grain size, and it follows the famous HallPetch relation
文摘The comparative study of the tensile plastic deformation of nano(n)-TiO2 ceramic prepared byphysical gas condensation (P) and chemical hydrolysis precipitation (C) methods was conductedby a gas pressure forming technique at 750~800℃. The results show that n-TiO2 (P) possessesexcellent property of tensile pIastic deformation comparing with n-TiO2(C). The reason for thisis attributed to the surface cleanness and soft agglomeration of n-TiO2 (P) particfe prepared inreIatively cIean vacuum condition.
基金supported by“Overall Rationing System”Project of Chongqing Talent Program(cstc2022ycjh-bgzxm0077)the National Natural Science Foundation of China(52074041)+1 种基金Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0836)Fundamental Research Funds for the Central Universities(2020CDJ-LHZZ-002),which are gratefully acknowledged.
文摘Gas drainage is an efective technology for gas control in coal mines.A high borehole-sealing quality is the fundamental precondition for efcient gas drainage.The expansibilities of cement pastes used in borehole-sealing processes are critical for the borehole-sealing efect.Nanosized magnesia expansive agents are used to improve the expansibilities of cement pastes and improve the borehole-sealing efect.Nuclear magnetic resonance spectrometry and scanning electron microscopy were adopted to study the efects of nanosized magnesia on the hydration of borehole-sealing cements used with diferent preparation methods.The results showed that an increase in the mass fraction of the nanosized magnesia promoted cement hydration,and the mass fraction was positively correlated with the promotion efect.The use of diferent preparation methods did not change the water-phase distribution in the cement.When using the wet-mixing preparation method,nanosized magnesia promoted the induction,acceleration,and deceleration periods of hydration;when using the dry-mixing preparation method,the nanosized magnesia promoted the induction period of cement hydration,and the promotion efect was less obvious than that seen when using the wet-mixing method.When using the wet-mixing preparation method,the nanosized magnesia was uniformly dispersed,thus enlarging the surface area of the reaction,which provided more nucleation sites for the hydration products of the cement and therefore accelerated the hydration reaction.When using the dry-mixing preparation method,the nanosized magnesia powders were dispersed nonuniformly and aggregated.Under these conditions,only a few nanosized magnesia particles on the surfaces of the aggregated clusters took part in hydration,so only a small number of nucleation sites were provided for the hydration products of cement.This led to inconsistent hydration of cement pastes prepared using the dry-mixing method.The surface porosity of the cement prepared with the wet-mixing preparation method frst decreased and then increased with increases in the mass fraction of the nanosized magnesia.The cement surface exhibited compact hydration products and few pores,and the surface was relatively smooth.In comparison,the surface porosity of the cement prepared using the dry-mixing method fuctuated with increasing mass fraction of the nanosized magnesia,resulting in a rough cement surface and microfractures on some surfaces.The two preparation methods both reduced the surface porosity of the cement.The wet-mixing preparation was more efective and consistent in improving the compactness of the cement than the dry-mixing preparation.These results provide important guidance on the addition of nanosized magnesia in borehole-sealing engineering and the selection of cement preparation methods,and they also lay a solid foundation for realizing safe and efcient gas drainage.
文摘Reaction-milled NiAl-TiB2 composite was fabricated by mechanical alloying elemental powders and hot pressing. TiB2 particles are distributed mostly in grain boundaries of the matrix. The compressive strain to failure of the composite at RT is about twice that of cast NiAl. The compressive yield stress at high temperatures is about 4.5 times higher than that of extruded NiAl, and is also much stronger than XD NiAl-TiB2 composites. Deformation behavior between 1000~1100℃ with different strain rates has been investigated
基金Supported by the National Natural Science Foundation of China under Grant Nos 51425401 and 51271056the Fundamental Research Funds for the Central Universities under Grant Nos N140901001 and N140902001the Doctoral Scientific Research Foundation of Liaoning Province under Grant No 20131034
文摘Tb0.3Dy0.TFe1.95 alloys are solidified under various high magnetic field conditions. The influence of a high magnetic field on the crystal orientation, morphology and magnetostriction of the alloys are studied. The results show that with the increase of magnetic flux density, the crystal orientation of the (Tb,Dy)Fe2 phase changed from (113) to (111) direction; the grains in the alloys tended to align along the magnetic field direction; and the magnetostriction of Tb0.3Dy0.7Fe1.95 alloys is remarkably improved. The change in magnetostriction of Tb0.3Dy0.TFe1.95 alloys is linked to the amount and the crystal orientation behavior of the (Tb,Dy)Fe2 phase.
文摘FeTi_1-O_2(= 0.00,0.05,0.10) nanocomposites are synthesized using a sol-gel method involving an ethanol solvent in the presence of ethylene glycol as the stabilizer,and acetic acid as the chemical reagent.Their structural and optical analyses are studied to reveal their physicochemical properties.Using the x-ray diffractometer(XRD)analysis,the size of the nanoparticles(NPs) is found to be 18-32 nm,where the size of the NPs decreases down to 18 nm when Fe impurity of up to 10% is added,whereas their structure remains unchanged.The results also indicate that the structure of the NPs is tetragonal in the anatase phase.The Fourier transform infrared spectroscopy analysis suggests the presence of a vibration bond(Ti-O) in the sample.The photoluminescence analysis indicates that the diffusion of Fe^(3+) ions into the TiO_2 matrix results in a decreasing electron-hole recombination,and increases the photocatalytic properties,where the best efficiency appears at an impurity of10%.The UV-diffuse reflection spectroscopy analysis indicates that with the elevation of iron impurity,the band gap value decreases from 3.47 eV for the pure sample to 2.95 eV for the 10 mol% Fe-doped TiO_2 NPs.