This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nut...Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.展开更多
In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unk...In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unknown nonlinearities and uncertainties,it is challenging to design a controller that can ensure the stability of closed-loop system within a predetermined finite time while maintaining the specified transient performance.The underlying problem becomes further complex as the control directions are unknown.To deal with the above problems,a special translation function as well as Nussbaum type function are introduced in the prescribed performance control(PPC)framework.Finally,a PPC as well as preset finite time tracking control scheme is designed,and its effectiveness is confirmed by both theoretical analysis and numerical simulation.展开更多
This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed t...This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed to a new set of variables based on prescribed performance functions.Then,the commonly used and powerful proportional-integral-derivative(PID)control concept is employed to filter the transformed error variables.To handle the fault-induced nonlinear terms,a composite learning algorithm consisting of neural network and disturbance observer is incorporated for increasing flight safety.It is shown by Lyapunov stability analysis that the tracking errors are strictly constrained within the specified error bounds.Experimental results are presented to verify the feasibility of the developed FTC scheme.展开更多
An optimal tracking control problem for a class of nonlinear systems with guaranteed performance and asymmetric input constraints is discussed in this paper.The control policy is implemented by adaptive dynamic progra...An optimal tracking control problem for a class of nonlinear systems with guaranteed performance and asymmetric input constraints is discussed in this paper.The control policy is implemented by adaptive dynamic programming(ADP)algorithm under two event-based triggering mechanisms.It is often challenging to design an optimal control law due to the system deviation caused by asymmetric input constraints.First,a prescribed performance control technique is employed to guarantee the tracking errors within predetermined boundaries.Subsequently,considering the asymmetric input constraints,a discounted non-quadratic cost function is introduced.Moreover,in order to reduce controller updates,an event-triggered control law is developed for ADP algorithm.After that,to further simplify the complexity of controller design,this work is extended to a self-triggered case for relaxing the need for continuous signal monitoring by hardware devices.By employing the Lyapunov method,the uniform ultimate boundedness of all signals is proved to be guaranteed.Finally,a simulation example on a mass–spring–damper system subject to asymmetric input constraints is provided to validate the effectiveness of the proposed control scheme.展开更多
In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control...In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error,are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method.展开更多
To ensure safe flight of multiple fixed-wing unmanned aerial vehicles(UAVs)formation,considering trajectory planning and formation control together,a leader trajectory planning method based on the sparse A*algorithm i...To ensure safe flight of multiple fixed-wing unmanned aerial vehicles(UAVs)formation,considering trajectory planning and formation control together,a leader trajectory planning method based on the sparse A*algorithm is introduced.Firstly,a formation controller based on prescribed performance theory is designed to control the transient and steady formation configuration,as well as the formation forming time,which not only can form the designated formation configuration but also can guarantee collision avoidance and terrain avoidance theoretically.Next,considering the constraints caused by formation controller on trajectory planning such as the safe distance,turn angle and step length,as well as the constraint of formation shape,a leader trajectory planning method based on sparse A^(*)algorithm is proposed.Simulation results show that the UAV formation can arrive at the destination safely with a short trajectory no matter keeping the formation or encountering formation transformation.展开更多
A prescribed performance control scheme based on the three-inflection-point hyperbolic function and predefined time performance function is proposed to solve the trajectory tracking problem of the forward-tilting morp...A prescribed performance control scheme based on the three-inflection-point hyperbolic function and predefined time performance function is proposed to solve the trajectory tracking problem of the forward-tilting morphing aerospace vehicle with time-varying actuator faults.To accurately estimate the loss degree of actuator faults,an immersion and invariance observer based on the predefined time dynamic scale factor is designed to estimate and compensate it.A composite dynamic sliding mode surface is designed using a three-inflection-point hyperbolic function,and a novel three-inflection-point sliding mode control framework is proposed.The convergent domain of the sliding manifold is adjusted by parameters,and the system error convergence is controllable.A transfer function is designed to eliminate the sensitivity of the three-inflection-point hyperbolic sliding mode to the unknown initial state,and combined with the barrier Lyapunov function,and the performance constraint of the system is realized.The global asymptotic stability of the system is demonstrated using a strict mathematical proof.The effectiveness and superiority of the proposed control scheme are proven by simulation experiments.展开更多
In this paper,a prescribed fast tracking control scheme is proposed for Flexible Airbreathing Hypersonic Vehicles(FAHV)subject to lumped disturbances and limited resources.To maintain tracking errors of velocity and a...In this paper,a prescribed fast tracking control scheme is proposed for Flexible Airbreathing Hypersonic Vehicles(FAHV)subject to lumped disturbances and limited resources.To maintain tracking errors of velocity and altitude converge to a predefined region with a prescribed time and release the transient intense fluctuations encountered in classical Prescribed Performance Control(PPC)using a fast decaying rate,a tracking differentiator-based PPC is presented,where the reaching time and the maximum time differentiation of preselected envelopes can be regulated as a prior via fixing an acceleration factor,so that a guaranteed fast convergence speed can be realized with reduced oscillations.Besides,to avoid the excessive occupation of limited resources(energy and communication)and guarantee a remarkable tracking accuracy,switching event-triggered mechanisms are constructed for FAHV control realization,which provide a promising way to pursue a desired level of tracking performance with a low energy consumption.Subsequently,Uncertainty and Disturbance Estimators(UDE)and Sigmoid function-based Tracking Differentiators(STD)are employed to provide disturbance estimation and reference derivation with a low computational complexity.Finally,robust control laws are designed to compensate for the sampling error induced by event-triggered conditions,meanwhile Zeno phenomena can be effectively eliminated.The simulation results and comparisons validate the effectiveness of the proposed scheme.展开更多
In this paper,as for the unmanned air vehicle(UAV)under external disturbance,an attainable-equilibrium-set-based safety fight envelope(SFE)calculation method is proposed,based on which a prescribed performance protect...In this paper,as for the unmanned air vehicle(UAV)under external disturbance,an attainable-equilibrium-set-based safety fight envelope(SFE)calculation method is proposed,based on which a prescribed performance protection control scheme is presented.Firstly,the existing definition of the SFE based on attainable equilibrium set(AES)is extended to make it consistent and suitable for the UAV system under disturbance.Secondly,a higher-order disturbance observer(HODO)is developed to estimate the disturbances and the disturbance estimation is applied in the computation of the SFE.Thirdly,by using the calculated SFE,a desired safety trajectory based on the time-varying safety margin function and first-order filter is developed to prevent the states of the UAV system from exceeding the SFE.Moreover,an SFE protection controller is proposed by combining the desired safety trajectory,backstepping method,HODO design,and prescribed performance(PP)control technique.In particular,the closed-loop system is established on the basis of disturbance estimation error,filter error,and tracking error.Finally,the stability of the closed-loop system is verified by the Lyapunov stability theory,and the simulations are presented to illustrate the effectiveness of the proposed control scheme.展开更多
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported by the National Natural Science Foundation of China(11972077,11672035)。
文摘Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.
基金supported in part by the National Key Research and Development Program of China under grant(No.2022YFB4701400/4701401)by the National Natural Science Foundation of China under grant(No.61991400,No.61991403,No.62250710167,No.61860206008,No.61933012,No.62273064,No.62203078)+2 种基金in part by the National Key Research and Development Program of China under grant(No.2021ZD0201300)in part by the Innovation Support Program for International Students Returning to China under grant(No.cx2022016)in part by the Chongqing Medical Scientific Research Project under grant(No.2022DBXM001).
文摘In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unknown nonlinearities and uncertainties,it is challenging to design a controller that can ensure the stability of closed-loop system within a predetermined finite time while maintaining the specified transient performance.The underlying problem becomes further complex as the control directions are unknown.To deal with the above problems,a special translation function as well as Nussbaum type function are introduced in the prescribed performance control(PPC)framework.Finally,a PPC as well as preset finite time tracking control scheme is designed,and its effectiveness is confirmed by both theoretical analysis and numerical simulation.
基金This work was supported by the National Natural Science Foundation of China(62003162,61833013,62020106003)the Natural Science Foundation of Jiangsu Province of China(BK20200416)+3 种基金the China Postdoctoral Science Foundation(2020TQ0151,2020M681590)the State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University(2019-KF-23-05)the 111 Project(B20007)the Natural Sciences and Engineering Research Council of Canada.
文摘This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed to a new set of variables based on prescribed performance functions.Then,the commonly used and powerful proportional-integral-derivative(PID)control concept is employed to filter the transformed error variables.To handle the fault-induced nonlinear terms,a composite learning algorithm consisting of neural network and disturbance observer is incorporated for increasing flight safety.It is shown by Lyapunov stability analysis that the tracking errors are strictly constrained within the specified error bounds.Experimental results are presented to verify the feasibility of the developed FTC scheme.
基金supported in part by the National Natural Science Foundation of China(62033003,62003093,62373113,U23A20341,U21A20522)the Natural Science Foundation of Guangdong Province,China(2023A1515011527,2022A1515011506).
文摘An optimal tracking control problem for a class of nonlinear systems with guaranteed performance and asymmetric input constraints is discussed in this paper.The control policy is implemented by adaptive dynamic programming(ADP)algorithm under two event-based triggering mechanisms.It is often challenging to design an optimal control law due to the system deviation caused by asymmetric input constraints.First,a prescribed performance control technique is employed to guarantee the tracking errors within predetermined boundaries.Subsequently,considering the asymmetric input constraints,a discounted non-quadratic cost function is introduced.Moreover,in order to reduce controller updates,an event-triggered control law is developed for ADP algorithm.After that,to further simplify the complexity of controller design,this work is extended to a self-triggered case for relaxing the need for continuous signal monitoring by hardware devices.By employing the Lyapunov method,the uniform ultimate boundedness of all signals is proved to be guaranteed.Finally,a simulation example on a mass–spring–damper system subject to asymmetric input constraints is provided to validate the effectiveness of the proposed control scheme.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11401243 and 61403157)the Fundamental Research Funds for the Central Universities of China(Grant No.GK201504002)the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China(Grant No.KJ2015A256)
文摘In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error,are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method.
基金supported by the National Natural Science Foundation of China(11502019).
文摘To ensure safe flight of multiple fixed-wing unmanned aerial vehicles(UAVs)formation,considering trajectory planning and formation control together,a leader trajectory planning method based on the sparse A*algorithm is introduced.Firstly,a formation controller based on prescribed performance theory is designed to control the transient and steady formation configuration,as well as the formation forming time,which not only can form the designated formation configuration but also can guarantee collision avoidance and terrain avoidance theoretically.Next,considering the constraints caused by formation controller on trajectory planning such as the safe distance,turn angle and step length,as well as the constraint of formation shape,a leader trajectory planning method based on sparse A^(*)algorithm is proposed.Simulation results show that the UAV formation can arrive at the destination safely with a short trajectory no matter keeping the formation or encountering formation transformation.
基金co-supported by the Xinjiang Uygur Autonomous Region Natural Science Foundation,China(No.2022D01C86)the National Natural Science Foundation of China(No.62263030)the Open Research Fund Program of Beijing National Research Center for Information Science and Technology,China(No.BR2023KF02011).
文摘A prescribed performance control scheme based on the three-inflection-point hyperbolic function and predefined time performance function is proposed to solve the trajectory tracking problem of the forward-tilting morphing aerospace vehicle with time-varying actuator faults.To accurately estimate the loss degree of actuator faults,an immersion and invariance observer based on the predefined time dynamic scale factor is designed to estimate and compensate it.A composite dynamic sliding mode surface is designed using a three-inflection-point hyperbolic function,and a novel three-inflection-point sliding mode control framework is proposed.The convergent domain of the sliding manifold is adjusted by parameters,and the system error convergence is controllable.A transfer function is designed to eliminate the sensitivity of the three-inflection-point hyperbolic sliding mode to the unknown initial state,and combined with the barrier Lyapunov function,and the performance constraint of the system is realized.The global asymptotic stability of the system is demonstrated using a strict mathematical proof.The effectiveness and superiority of the proposed control scheme are proven by simulation experiments.
基金supported by National Natural Science Foundation of China(No.61803348)National Nature Science Foundation of China as National Major Scientific Instruments Development Project(No.61927807)+5 种基金State Key Laboratory of Deep Buried Target Damage,China(No.DXMBJJ2019-02)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China(No.2020L0266)Shanxi Province Science Foundation for Youths,China(No.201701D221123)Youth Academic North University of China(No.QX201803)Program for the Innovative Talents of Higher Education Institutions of ShanxiShanxi“1331 Project” Key Subjects Construction,China(1331KSC)。
文摘In this paper,a prescribed fast tracking control scheme is proposed for Flexible Airbreathing Hypersonic Vehicles(FAHV)subject to lumped disturbances and limited resources.To maintain tracking errors of velocity and altitude converge to a predefined region with a prescribed time and release the transient intense fluctuations encountered in classical Prescribed Performance Control(PPC)using a fast decaying rate,a tracking differentiator-based PPC is presented,where the reaching time and the maximum time differentiation of preselected envelopes can be regulated as a prior via fixing an acceleration factor,so that a guaranteed fast convergence speed can be realized with reduced oscillations.Besides,to avoid the excessive occupation of limited resources(energy and communication)and guarantee a remarkable tracking accuracy,switching event-triggered mechanisms are constructed for FAHV control realization,which provide a promising way to pursue a desired level of tracking performance with a low energy consumption.Subsequently,Uncertainty and Disturbance Estimators(UDE)and Sigmoid function-based Tracking Differentiators(STD)are employed to provide disturbance estimation and reference derivation with a low computational complexity.Finally,robust control laws are designed to compensate for the sampling error induced by event-triggered conditions,meanwhile Zeno phenomena can be effectively eliminated.The simulation results and comparisons validate the effectiveness of the proposed scheme.
基金supported in part by the National Science Fund for Distinguished Young Scholars 61825302in part by the National Natural Science Foundation of China under Grant U2013201in part by the Key R&D projects(Social Development)in Jiangsu Province of China under Grant BE2020704.
文摘In this paper,as for the unmanned air vehicle(UAV)under external disturbance,an attainable-equilibrium-set-based safety fight envelope(SFE)calculation method is proposed,based on which a prescribed performance protection control scheme is presented.Firstly,the existing definition of the SFE based on attainable equilibrium set(AES)is extended to make it consistent and suitable for the UAV system under disturbance.Secondly,a higher-order disturbance observer(HODO)is developed to estimate the disturbances and the disturbance estimation is applied in the computation of the SFE.Thirdly,by using the calculated SFE,a desired safety trajectory based on the time-varying safety margin function and first-order filter is developed to prevent the states of the UAV system from exceeding the SFE.Moreover,an SFE protection controller is proposed by combining the desired safety trajectory,backstepping method,HODO design,and prescribed performance(PP)control technique.In particular,the closed-loop system is established on the basis of disturbance estimation error,filter error,and tracking error.Finally,the stability of the closed-loop system is verified by the Lyapunov stability theory,and the simulations are presented to illustrate the effectiveness of the proposed control scheme.