Parameterized dynamical systems with a simple zero eigenvalue and a couple of purely imaginary eigenvalues are considered. It is proved that this type of eigen-structure leads to torus bifurcation under certain nondeg...Parameterized dynamical systems with a simple zero eigenvalue and a couple of purely imaginary eigenvalues are considered. It is proved that this type of eigen-structure leads to torus bifurcation under certain nondegenerate conditions. We show that the discrete systems, obtained by discretizing the ODEs using symmetric, eigen-structure preserving schemes, inherit the similar torus bifurcation properties. Predholm theory in Banach spaces is applied to obtain the global torus bifurcation. Our results complement those on the study of discretization effects of global bifurcation.展开更多
To obtain convergent numerical approximations without using any orthogonalization operations is of great importance in electronic structure calculations.In this paper,we propose and analyze a class of iteration scheme...To obtain convergent numerical approximations without using any orthogonalization operations is of great importance in electronic structure calculations.In this paper,we propose and analyze a class of iteration schemes for the discretized Kohn-Sham Density Functional Theory model,with which the iterative approximations are guaranteed to converge to the Kohn-Sham orbitals without any orthogonalization as long as the initial orbitals are orthogonal and the time step sizes are given properly.In addition,we present a feasible and efficient approach to get suitable time step sizes and report some numerical experiments to validate our theory.展开更多
We study the l^1-stability of a Haxniltonian-preserving scheme, developed in [Jin and Wen, Comm. Math. Sci., 3 (2005), 285-315], for the Liouville equation with a discontinuous potential in one space dimension. We p...We study the l^1-stability of a Haxniltonian-preserving scheme, developed in [Jin and Wen, Comm. Math. Sci., 3 (2005), 285-315], for the Liouville equation with a discontinuous potential in one space dimension. We prove that, for suitable initial data, the scheme is stable in the l^1-norm under a hyperbolic CFL condition which is in consistent with the l^1-convergence results established in [Wen and Jin, SIAM J. Numer. Anal., 46 (2008), 2688-2714] for the same scheme. The stability constant is shown to be independent of the computational time. We also provide a counter example to show that for other initial data, in particular, the measure-valued initial data, the numerical solution may become l^1-unstable.展开更多
The computation of compressible flows becomesmore challengingwhen the Mach number has different orders of magnitude.When the Mach number is of order one,modern shock capturing methods are able to capture shocks and ot...The computation of compressible flows becomesmore challengingwhen the Mach number has different orders of magnitude.When the Mach number is of order one,modern shock capturing methods are able to capture shocks and other complex structures with high numerical resolutions.However,if theMach number is small,the acoustic waves lead to stiffness in time and excessively large numerical viscosity,thus demanding much smaller time step and mesh size than normally needed for incompressible flow simulation.In this paper,we develop an all-speed asymptotic preserving(AP)numerical scheme for the compressible isentropic Euler and Navier-Stokes equations that is uniformly stable and accurate for all Mach numbers.Our idea is to split the system into two parts:one involves a slow,nonlinear and conservative hyperbolic system adequate for the use of modern shock capturing methods and the other a linear hyperbolic system which contains the stiff acoustic dynamics,to be solved implicitly.This implicit part is reformulated into a standard pressure Poisson projection system and thus possesses sufficient structure for efficient fast Fourier transform solution techniques.In the zero Mach number limit,the scheme automatically becomes a projection method-like incompressible solver.We present numerical results in one and two dimensions in both compressible and incompressible regimes.展开更多
We study the Ll-error of a Hamiltonian-preserving scheme, developed in [19], for the Liouville equation with a piecewise constant potential in one space dimension when the initial data is given with perturbation error...We study the Ll-error of a Hamiltonian-preserving scheme, developed in [19], for the Liouville equation with a piecewise constant potential in one space dimension when the initial data is given with perturbation errors. We extend the l1-stability analysis in [46] and apply the Ll-error estimates with exact initial data established in [45] for the same scheme. We prove that the scheme with the Dirichlet incoming boundary conditions and for a class of bounded initial data is Ll-convergent when the initial data is given with a wide class of perturbation errors, and derive the Ll-error bounds with explicit coefficients. The convergence rate of the scheme is shown to be less than the order of the initial perturbation error, matching with the fact that the perturbation solution can be l1-unstable.展开更多
We present new large time step methods for the shallow water flows in the lowFroude number limit.In order to take into accountmultiscale phenomena that typically appear in geophysical flows nonlinear fluxes are split ...We present new large time step methods for the shallow water flows in the lowFroude number limit.In order to take into accountmultiscale phenomena that typically appear in geophysical flows nonlinear fluxes are split into a linear part governing the gravitational waves and the nonlinear advection.We propose to approximate fast linear waves implicitly in time and in space bymeans of a genuinely multidimensional evolution operator.On the other hand,we approximate nonlinear advection part explicitly in time and in space bymeans of themethod of characteristics or some standard numerical flux function.Time integration is realized by the implicit-explicit(IMEX)method.We apply the IMEX Euler scheme,two step Runge Kutta Cranck Nicolson scheme,as well as the semi-implicit BDF scheme and prove their asymptotic preserving property in the low Froude number limit.Numerical experiments demonstrate stability,accuracy and robustness of these new large time step finite volume schemes with respect to small Froude number.展开更多
In this paper,we consider the multi-dimensional asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations on distorted quadrilateral meshes.Different from the former scheme [J.Comput.Phys....In this paper,we consider the multi-dimensional asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations on distorted quadrilateral meshes.Different from the former scheme [J.Comput.Phys.285(2015),265-279] on uniform meshes,in this paper,in order to obtain the boundary fluxes based on the framework of unified gas kinetic scheme(UGKS),we use the real multi-dimensional reconstruction for the initial data and the macro-terms in the equation of the gray transfer equations.We can prove that the scheme is asymptotic preserving,and especially for the distorted quadrilateral meshes,a nine-point scheme [SIAM J.SCI.COMPUT.30(2008),1341-1361] for the diffusion limit equations is obtained,which is naturally reduced to standard five-point scheme for the orthogonal meshes.The numerical examples on distorted meshes are included to validate the current approach.展开更多
We present a new Dirichlet boundary condition for the rate-type non-Newtonian diffusive constitutive models. The newly proposed boundary condition is compared with two such well-known and popularly used boundary condi...We present a new Dirichlet boundary condition for the rate-type non-Newtonian diffusive constitutive models. The newly proposed boundary condition is compared with two such well-known and popularly used boundary conditions as the pure Neumann condition and the Dirichlet condition by Sureshkumar and Beris. Our condition is demonstrated to be more stable and robust in a number of numerical test cases. A new Dirichlet boundary condition is implemented in the framework of the finite difference Marker and Cell (MAC) method. In this paper, we also present an energy-stable finite difference MAC scheme that preserves the positivity for the conformation tensor and show how the addition of the diffusion helps the energy-stability in a finite difference MAC scheme-setting.展开更多
The present work concerns the numerical approximation of the M_(1) model for radiative transfer.The main purpose is to introduce an accurate finite volume method according to the nonlinear system of conservation laws ...The present work concerns the numerical approximation of the M_(1) model for radiative transfer.The main purpose is to introduce an accurate finite volume method according to the nonlinear system of conservation laws that governs this model.We propose to derive an HLLC method which preserves the stationary contact waves.To supplement this essential property,the method is proved to be robust and to preserve the physical admissible states.Next,a relevant asymptotic preserving correction is proposed in order to obtain a method which is able to deal with all the physical regimes.The relevance of the numerical procedure is exhibited thanks to numerical simulations of physical interest.展开更多
基金The NSFC (10071030) of ChinaThe Volkswagen Foundation of Germany The Project-sponsored by SRP for ROCS, SEM (2002).
文摘Parameterized dynamical systems with a simple zero eigenvalue and a couple of purely imaginary eigenvalues are considered. It is proved that this type of eigen-structure leads to torus bifurcation under certain nondegenerate conditions. We show that the discrete systems, obtained by discretizing the ODEs using symmetric, eigen-structure preserving schemes, inherit the similar torus bifurcation properties. Predholm theory in Banach spaces is applied to obtain the global torus bifurcation. Our results complement those on the study of discretization effects of global bifurcation.
基金This work was supported by the National Key R&D Program of China under grants 2019YFA0709600,2019YFA0709601the National Natural Science Foundation of China under grant 12021001.
文摘To obtain convergent numerical approximations without using any orthogonalization operations is of great importance in electronic structure calculations.In this paper,we propose and analyze a class of iteration schemes for the discretized Kohn-Sham Density Functional Theory model,with which the iterative approximations are guaranteed to converge to the Kohn-Sham orbitals without any orthogonalization as long as the initial orbitals are orthogonal and the time step sizes are given properly.In addition,we present a feasible and efficient approach to get suitable time step sizes and report some numerical experiments to validate our theory.
基金Innovation Project of the Chinese Academy of Sciences grants K5501312S1,K5502212F1,K7290312G7 and K7502712F7NSFC grant 10601062+1 种基金NSF grant DMS-0608720NSAF grant 10676017
文摘We study the l^1-stability of a Haxniltonian-preserving scheme, developed in [Jin and Wen, Comm. Math. Sci., 3 (2005), 285-315], for the Liouville equation with a discontinuous potential in one space dimension. We prove that, for suitable initial data, the scheme is stable in the l^1-norm under a hyperbolic CFL condition which is in consistent with the l^1-convergence results established in [Wen and Jin, SIAM J. Numer. Anal., 46 (2008), 2688-2714] for the same scheme. The stability constant is shown to be independent of the computational time. We also provide a counter example to show that for other initial data, in particular, the measure-valued initial data, the numerical solution may become l^1-unstable.
基金J.-G.Liu was supported by NSF grant DMS 10-11738.J.Haack and S.Jin were supported by NSF grant DMS-0608720the NSF FRG grant”Collaborative research on Kinetic Description of Multiscale Phenomena:Modeling,Theory and Computation”(NSF DMS-0757285).
文摘The computation of compressible flows becomesmore challengingwhen the Mach number has different orders of magnitude.When the Mach number is of order one,modern shock capturing methods are able to capture shocks and other complex structures with high numerical resolutions.However,if theMach number is small,the acoustic waves lead to stiffness in time and excessively large numerical viscosity,thus demanding much smaller time step and mesh size than normally needed for incompressible flow simulation.In this paper,we develop an all-speed asymptotic preserving(AP)numerical scheme for the compressible isentropic Euler and Navier-Stokes equations that is uniformly stable and accurate for all Mach numbers.Our idea is to split the system into two parts:one involves a slow,nonlinear and conservative hyperbolic system adequate for the use of modern shock capturing methods and the other a linear hyperbolic system which contains the stiff acoustic dynamics,to be solved implicitly.This implicit part is reformulated into a standard pressure Poisson projection system and thus possesses sufficient structure for efficient fast Fourier transform solution techniques.In the zero Mach number limit,the scheme automatically becomes a projection method-like incompressible solver.We present numerical results in one and two dimensions in both compressible and incompressible regimes.
文摘We study the Ll-error of a Hamiltonian-preserving scheme, developed in [19], for the Liouville equation with a piecewise constant potential in one space dimension when the initial data is given with perturbation errors. We extend the l1-stability analysis in [46] and apply the Ll-error estimates with exact initial data established in [45] for the same scheme. We prove that the scheme with the Dirichlet incoming boundary conditions and for a class of bounded initial data is Ll-convergent when the initial data is given with a wide class of perturbation errors, and derive the Ll-error bounds with explicit coefficients. The convergence rate of the scheme is shown to be less than the order of the initial perturbation error, matching with the fact that the perturbation solution can be l1-unstable.
基金supported by the German Science Foundation under the grants LU 1470/2-2 and No 361/3-2.The second author has been supported by the Alexander-von-Humboldt Foundation through a postdoctoral fellowship.M.L.and G.B.would like to thank Dr.Leonid Yelash(JGU Mainz)for fruitful discussions.
文摘We present new large time step methods for the shallow water flows in the lowFroude number limit.In order to take into accountmultiscale phenomena that typically appear in geophysical flows nonlinear fluxes are split into a linear part governing the gravitational waves and the nonlinear advection.We propose to approximate fast linear waves implicitly in time and in space bymeans of a genuinely multidimensional evolution operator.On the other hand,we approximate nonlinear advection part explicitly in time and in space bymeans of themethod of characteristics or some standard numerical flux function.Time integration is realized by the implicit-explicit(IMEX)method.We apply the IMEX Euler scheme,two step Runge Kutta Cranck Nicolson scheme,as well as the semi-implicit BDF scheme and prove their asymptotic preserving property in the low Froude number limit.Numerical experiments demonstrate stability,accuracy and robustness of these new large time step finite volume schemes with respect to small Froude number.
基金supported by the Science and Technology Development foundation of China Academy of Engineering Physics(Grant Nos.2015B0202041,2015B0202040)the Science and Technology Development foundation of China Academy of Engineering Physics(Grant 2015B0202040)+2 种基金the Science and Technology Development foundation of China Academy of Engineering Physics(Grant No.2015B0202033)for LiNSFC(Grant No.11371068)for SunNSFC(Grant No.11371068)for Zeng
文摘In this paper,we consider the multi-dimensional asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations on distorted quadrilateral meshes.Different from the former scheme [J.Comput.Phys.285(2015),265-279] on uniform meshes,in this paper,in order to obtain the boundary fluxes based on the framework of unified gas kinetic scheme(UGKS),we use the real multi-dimensional reconstruction for the initial data and the macro-terms in the equation of the gray transfer equations.We can prove that the scheme is asymptotic preserving,and especially for the distorted quadrilateral meshes,a nine-point scheme [SIAM J.SCI.COMPUT.30(2008),1341-1361] for the diffusion limit equations is obtained,which is naturally reduced to standard five-point scheme for the orthogonal meshes.The numerical examples on distorted meshes are included to validate the current approach.
文摘We present a new Dirichlet boundary condition for the rate-type non-Newtonian diffusive constitutive models. The newly proposed boundary condition is compared with two such well-known and popularly used boundary conditions as the pure Neumann condition and the Dirichlet condition by Sureshkumar and Beris. Our condition is demonstrated to be more stable and robust in a number of numerical test cases. A new Dirichlet boundary condition is implemented in the framework of the finite difference Marker and Cell (MAC) method. In this paper, we also present an energy-stable finite difference MAC scheme that preserves the positivity for the conformation tensor and show how the addition of the diffusion helps the energy-stability in a finite difference MAC scheme-setting.
文摘The present work concerns the numerical approximation of the M_(1) model for radiative transfer.The main purpose is to introduce an accurate finite volume method according to the nonlinear system of conservation laws that governs this model.We propose to derive an HLLC method which preserves the stationary contact waves.To supplement this essential property,the method is proved to be robust and to preserve the physical admissible states.Next,a relevant asymptotic preserving correction is proposed in order to obtain a method which is able to deal with all the physical regimes.The relevance of the numerical procedure is exhibited thanks to numerical simulations of physical interest.