Pressing process is a manufacturing method that obtained work piece with certain dimension, shape and capability through die forcing roughcast to produce plastic deformation or separate. This paper focuses on the key ...Pressing process is a manufacturing method that obtained work piece with certain dimension, shape and capability through die forcing roughcast to produce plastic deformation or separate. This paper focuses on the key problems of visualization simulation in pressing die. The final aim is that numerical simulation system can simulate the process of processing forming technique, which can supply some necessary and accurate key parameters for die design. The detail description of mechanical characteristic and key technique of sheet forming technique is discussed. Pressing forming method is one of the most important forming techniques of metal forming, which has special mechanical characteristics. The character of sheet pressing forming is that the deformation of thickness direction is very small in contrast to other directions. The deformation mode of sheet forming mainly has the following kinds: bi-directional stretch, plane stress, stretches, depths extend, bending and counter-bending. The essence of press forming is the transferring course that the transferring region of rough comes to deformation by outside force, which is main researching principle in forming and the transferring field. The analysis of pressing forming course, disclose the feature of stress-strain and their changing rule, then pressing process and forming parameters could be obtained. So the states of force and deformation of transferring region is key to determine character about the varieties of pressing transferring. The paper analyzes these factors, which may influence forming precision in pressing process. In traditional methods, some key parameter such as spring-back, bending radius for die design are calculated by experience formula or select from data table. The paper brings forward the calculation methods of key parameter in the case of drawing finite element method and numerical simulation into pressing die design. In order to calculate the value of key parameters based on data supplied by FEM, a numerical simulation application is finished combined with two descriptions of work piece deformation NURBS and discrete piece. The numerical simulation is programmed on Microsoft Visual C++ with OpenGL as the graphics tool. It establishes numerical simulation program, dynamically simulates the process of sheet pressing figuration, and gets good effects.展开更多
The effects of Si content on combinations of important properties such as hardness, hardenability, and weldability in addition to strength increment were systematically investigated to develop a Mo and V free low allo...The effects of Si content on combinations of important properties such as hardness, hardenability, and weldability in addition to strength increment were systematically investigated to develop a Mo and V free low alloy cast steel for automobile cold pressing die insert. For the evaluation of the applicability as the die insert, the mechanical properties were measured after spheroidization annealing (SA), quenching and tempering (Q/T), and flame hardening (FH) treatments, respectively. The developed 0.8%-1.6%Si containing Mo and V free alloy cast steels showed excellent matrix strengthening effect, hardenability, and weldability, fulfilling the industrial criterion of the mechanical properties for the die insert.展开更多
Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with ...Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with and without nano-TiN addition fabricated by PIM and die pressing were analyzed. It is demonstrated that for either PIM or die pressing, the porosities are obviously reduced, the mechanical properties are significantly improved after adding nano-TiN, and the hard particles are refined; the rim phase thickness obviously becomes thinner, and the number of dimples in fracture also increases. Compared the samples fabricated by die pressing, it is difficult for PIM to obtain dense Ti(C,N)-based cermets. Due to the too much existence of pores and isolated carbon, the mechanical properties of the sintered samples by PIM are inferior to those of the sintered ones by die pressing.展开更多
The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control...The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control in parameters of forming process, the paper explored the humanoid based intelligence control strategy. In the paper, it made the anatomy in control puzzle resulted in uncertainty such as chemical component of plastic cement etc., summarized up the characteristic of cybernetics in forming process, researched on the humanoid based intelligence control strategy, and constructed the control algorithm of forming process in plastic cement work-piece. Taking the process experiment of temperature and pressure control as an example, it validated the good dynamic and static control quality through simulation of control algorithm constructed in this paper. The experimental results show that the control algorithm explored in this paper is reasonably available.展开更多
The NiAl-28Cr-5.85Mo-0.15Hf alloy was prepared by high-pressure die casting (HPDC) and subsequent hot isostatic pressing(HIP), and tested for compressible strength and fracture behavior at 300-1 373 K. The results sho...The NiAl-28Cr-5.85Mo-0.15Hf alloy was prepared by high-pressure die casting (HPDC) and subsequent hot isostatic pressing(HIP), and tested for compressible strength and fracture behavior at 300-1 373 K. The results show that the elevated temperature 0.2% compressible yield strength as well as the room-temperature compressible fracture strain of as-HIP alloy are larger than those of the same alloy prepared by directional solidification (DS). It suggests that the fine structures with a homogeneous distribution of fine Cr (Mo) and Hf-rich phase created by high-pressure die casting lead to these improvements.展开更多
文摘Pressing process is a manufacturing method that obtained work piece with certain dimension, shape and capability through die forcing roughcast to produce plastic deformation or separate. This paper focuses on the key problems of visualization simulation in pressing die. The final aim is that numerical simulation system can simulate the process of processing forming technique, which can supply some necessary and accurate key parameters for die design. The detail description of mechanical characteristic and key technique of sheet forming technique is discussed. Pressing forming method is one of the most important forming techniques of metal forming, which has special mechanical characteristics. The character of sheet pressing forming is that the deformation of thickness direction is very small in contrast to other directions. The deformation mode of sheet forming mainly has the following kinds: bi-directional stretch, plane stress, stretches, depths extend, bending and counter-bending. The essence of press forming is the transferring course that the transferring region of rough comes to deformation by outside force, which is main researching principle in forming and the transferring field. The analysis of pressing forming course, disclose the feature of stress-strain and their changing rule, then pressing process and forming parameters could be obtained. So the states of force and deformation of transferring region is key to determine character about the varieties of pressing transferring. The paper analyzes these factors, which may influence forming precision in pressing process. In traditional methods, some key parameter such as spring-back, bending radius for die design are calculated by experience formula or select from data table. The paper brings forward the calculation methods of key parameter in the case of drawing finite element method and numerical simulation into pressing die design. In order to calculate the value of key parameters based on data supplied by FEM, a numerical simulation application is finished combined with two descriptions of work piece deformation NURBS and discrete piece. The numerical simulation is programmed on Microsoft Visual C++ with OpenGL as the graphics tool. It establishes numerical simulation program, dynamically simulates the process of sheet pressing figuration, and gets good effects.
文摘The effects of Si content on combinations of important properties such as hardness, hardenability, and weldability in addition to strength increment were systematically investigated to develop a Mo and V free low alloy cast steel for automobile cold pressing die insert. For the evaluation of the applicability as the die insert, the mechanical properties were measured after spheroidization annealing (SA), quenching and tempering (Q/T), and flame hardening (FH) treatments, respectively. The developed 0.8%-1.6%Si containing Mo and V free alloy cast steels showed excellent matrix strengthening effect, hardenability, and weldability, fulfilling the industrial criterion of the mechanical properties for the die insert.
基金the National Natural Science Foundation of China (No. 51172018)the Kennametal, Inc. for the fnancial support
文摘Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with and without nano-TiN addition fabricated by PIM and die pressing were analyzed. It is demonstrated that for either PIM or die pressing, the porosities are obviously reduced, the mechanical properties are significantly improved after adding nano-TiN, and the hard particles are refined; the rim phase thickness obviously becomes thinner, and the number of dimples in fracture also increases. Compared the samples fabricated by die pressing, it is difficult for PIM to obtain dense Ti(C,N)-based cermets. Due to the too much existence of pores and isolated carbon, the mechanical properties of the sintered samples by PIM are inferior to those of the sintered ones by die pressing.
文摘The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control in parameters of forming process, the paper explored the humanoid based intelligence control strategy. In the paper, it made the anatomy in control puzzle resulted in uncertainty such as chemical component of plastic cement etc., summarized up the characteristic of cybernetics in forming process, researched on the humanoid based intelligence control strategy, and constructed the control algorithm of forming process in plastic cement work-piece. Taking the process experiment of temperature and pressure control as an example, it validated the good dynamic and static control quality through simulation of control algorithm constructed in this paper. The experimental results show that the control algorithm explored in this paper is reasonably available.
基金Project (05YB31) supported by the Scientific Research Initial Foundation for Doctor of Shenyang Institute of Aeronautical Engineering,China
文摘The NiAl-28Cr-5.85Mo-0.15Hf alloy was prepared by high-pressure die casting (HPDC) and subsequent hot isostatic pressing(HIP), and tested for compressible strength and fracture behavior at 300-1 373 K. The results show that the elevated temperature 0.2% compressible yield strength as well as the room-temperature compressible fracture strain of as-HIP alloy are larger than those of the same alloy prepared by directional solidification (DS). It suggests that the fine structures with a homogeneous distribution of fine Cr (Mo) and Hf-rich phase created by high-pressure die casting lead to these improvements.