Ellipse fitting is a useful tool to obtain the differential signal of two atom interference gravimeters. The quality standard of ellipse fitting should be the deviation between the true phase and the fitting phase of ...Ellipse fitting is a useful tool to obtain the differential signal of two atom interference gravimeters. The quality standard of ellipse fitting should be the deviation between the true phase and the fitting phase of the interference fringe. In this paper, we present a new algorithm to fit the ellipse. The algorithm is to minimize the differential noise of two interference gravimeters and obtain a more accurate value of the gravity gradient. We have theoretically derived the expression of the differential-mode noise and implemented the ellipse fitting in the program. This new algorithm is also compared with the classical methods.展开更多
After remanufacturing disassembly,several kinds of friction damages can be found on the mating surface of interference fit.These damages should be repaired and the cost is closely related to the severity of damages.In...After remanufacturing disassembly,several kinds of friction damages can be found on the mating surface of interference fit.These damages should be repaired and the cost is closely related to the severity of damages.Inspired by the excellent performance of surface texture in wear reduction,5 shapes of pit array textures are added to the specimens’surface to study their reduction effect of disassembly damage for interference fit.The results of disassembly experiments show that the order of influence of texture parameters on disassembly damage is as follows:equivalent circle diameter of single texture,texture shape and texture surface density.The influence of equivalent circle diameter of single texture and texture shape are obviously more significant than that of texture surface density.The circular texture with a surface density of 30%and a diameter of 100μm shows an excellent disassembly damage reduction effect because of its perfect ability of abrasive particle collection.And the probability of disassembly damage formation and evolution is also relatively small on this kind of textured surface.Besides,the load-carrying capacity of interference fit with the excellent texture is confirmed by load-carrying capacity experiments.The results show that the load-carrying capacity of the excellent texture surface is increased about 40%compared with that of without texture.This research provides a potential approach to reduce disassembly damage for interference fit.展开更多
Interference fit riveting is an effective way to improve the fatigue life of aircraft.The accurate control of riveting interference of aircraft automatic drilling and riveting equipment is achieved by process paramete...Interference fit riveting is an effective way to improve the fatigue life of aircraft.The accurate control of riveting interference of aircraft automatic drilling and riveting equipment is achieved by process parameters including upsetting force and upset head height.It is valuable for aircraft manufacturing engineering.An approach to interference riveting process control based on the analysis of interference riveting stress field is proposed.According to assembly structure,the upsetting force is calculated by the material property and interference fit level,and the upset head height is deduced by the upsetting force.The experimental result shows that the interference fit level can be controlled accurately by the upsetting force and upset head height,and then,the quality of aircraft automatic riveting can be improved.The proposed approach is verified by the good match between the predicted result and the experimental result.展开更多
The lifetime of roll-bits with inserted tooth will be obviously decreased while drilling in strata and the tungsten carbide can be integrally separated from the roll-cone,which will need more trip out time to replace ...The lifetime of roll-bits with inserted tooth will be obviously decreased while drilling in strata and the tungsten carbide can be integrally separated from the roll-cone,which will need more trip out time to replace the roller bit.This study provides an entire analysis on stress as well as strength for teeth and tooth holes in loaded conditions.Qualities of tooth drop from matrix within roller bit.The optimized interferences of teeth inserted into the bit can be reasonably obtained by the critical interference derived from some relevant influence factors on the tooth-fixing quality of roller bits.展开更多
When the gearbox body interference is connected to the ring gear, prestressing occurs in the ring gear, which has a significant impact on the strength and life of the gear. Research on the prestressing of the inner ri...When the gearbox body interference is connected to the ring gear, prestressing occurs in the ring gear, which has a significant impact on the strength and life of the gear. Research on the prestressing of the inner ring gear is in the preliminary stage, and the distribution rule of the prestressing and the influence of each parameter on the interference prestressing have not been derived. In this paper, based on the method of calculating the prestressing of the thick cylinder in interference fit, the ring gear is found to be equivalent to a thick cylinder, and the distribution rule of prestressing of the ring gear in the interference fit is inferred. Then, by modeling and analyzing the gearbox body and ring gear in the interference fit using ABAQUS, the distribution rule of prestressing the ring gear in the interference fit is obtained through a numerical simulation. Finally, the prestressing of the ring gear in the interference fit is measured using X-ray di raction, and the distribution rule of prestressing of the ring gear in the interference fit is obtained through analysis. Compared with the distribution rule of prestressing in theory, numerical simulation, and experiment, the theoretical distribution rule of prestressing is amended through a statistical method, and a more accurate formula of prestressing is obtained. Through the calculation of the stress and bending moment in the dangerous section of the ring gear through prestressing, the formula for checking the tooth root flexural fatigue strength in the interference fit prestressing is inferred. This research proposes a tooth root bending strength conditional formula for the inner ring gear of the interference fit, which serves as a guide for the design and production of the actual interference joint inner ring gear.展开更多
For entire roller embedded shapemeter roll, the relationship between the value of interference fit and the sensor pre-pressure, and the pressure transfer performance of shapemeter roll were analyzed by elasticity theo...For entire roller embedded shapemeter roll, the relationship between the value of interference fit and the sensor pre-pressure, and the pressure transfer performance of shapemeter roll were analyzed by elasticity theory during the cold reversible rolling process. Considering the influence of strip temperature on the interference fit, the distributions of contact pressure of the framework's top surface and the sensor pre-pressure on different values of interference fit were analyzed by the finite element technology. The results show that the contact pressure of the framework's top surface and the sensor pre-pressure increase with the increase of the value of interference fit. When the value of interference fit is between 0.05 mm and 0.09 mm, roll body's inner hole surface, the framework and pressure magnetic sensitive component don't separate from each other, and the sensor works in the linear segment of characteristic curve, so the normal operation of shapemeter roll is guaranteed.展开更多
Oil film bearing,which works on thin film between sleeve and bush,is widely used in steel industry due to the characteristics of high efficiency and low noise,etc. The backup roll of 1 580PC hot strip mill invested by...Oil film bearing,which works on thin film between sleeve and bush,is widely used in steel industry due to the characteristics of high efficiency and low noise,etc. The backup roll of 1 580PC hot strip mill invested by some steel corporation has been equipped with such bearing. During the process of setup&disassembly and usage period,the sleeve has been dramatically damaged,which results in production accidents and decreases its service life,thus heavily influencing steel production. Aimed at such puzzles,under specific loadcase,mechanical properties of bearing sleeve,as well as estimation of contact status and adhesive force of sleeve by interference fit,are quantitatively simulated by finite element method,which establishes an mechanical foundation for improving the load capacity of bearing and decreasing its wear and adhesion damages. Finally,some measures and conclusions are drawn.展开更多
The letter presents an analysis of interference fit of the electric spindle at different rotor speeds due to the influence of centrifugal force and provide<span style="font-family:;" "=""&g...The letter presents an analysis of interference fit of the electric spindle at different rotor speeds due to the influence of centrifugal force and provide<span style="font-family:;" "="">s</span><span style="font-family:;" "=""> a theoretical formula showing the relationship of the speed, stress on the rotation speed. The letter a</span><span style="font-family:Verdana;"></span><span style="font-family:;" "="">lso established a finite element model of the interference fit. The study found that as the rotation speed increases, the interference and contact stress between the spindle and the rotor gradually decrease, and the reduced speed is proportional to the square of the rotation speed.</span>展开更多
Within offshore installations, making tubing connections conduct electricity is a developing interest. Being able to use tubing structures to carry the drive power needed downhole avoids installation of cables and lin...Within offshore installations, making tubing connections conduct electricity is a developing interest. Being able to use tubing structures to carry the drive power needed downhole avoids installation of cables and lines. The challenge is making the connection good enough with minimum possible power loss. At the same time, the connection has to secure the transfer of the rated power without any danger of overheating. An overheating can eventually result in a welded connection. Previous studies on contact design have mainly focused on low level contact force, while this study aims to find out the influence of surface roughness and connection strength, at macro level, on contact resistance of tubing connections so as to know the power transfer capability of the connection. First, the connection is simplified by "rolling out" the tubes to flat sheet metals and the voltage drop at rated current was measured at various loads. Then experiment was conducted on contact pairs with two different surface finish qualities and three different contact fits. The results show that smoother surfaces ease the flow of current while high interference fit increases the contact stability. The influence of surface topography becomes insignificantly low at high connection interference.展开更多
The design and fabrication of electromagnetic interference shielding films with a novel structure to eliminate undesirable electromagnetic pollution is an important research direction.However,it is still a challenge t...The design and fabrication of electromagnetic interference shielding films with a novel structure to eliminate undesirable electromagnetic pollution is an important research direction.However,it is still a challenge to combine and organize nanofillers in different dimensions into the structured network in polymer-based electromagnetic interference(EMI)shielding composites.In this work,a sandwich struc-ture polyimide(PI)composite film with alternative 2D-MXene network and 1D-Silver nanowires(Ag NWs)network was prepared through the“electrospinning-immersion-hot pressing”method.With the increase of Ag NWs content,the EMI shielding effectiveness(SE)gradually increases while maintaining good flexibility and mechanical robustness.The EMI SE and the tensile strength of 150μm thick sand-wich composite film can reach up to 79.54 dB and 39.82 MPa,respectively.The prepared flexible and robust PI composite film with a sandwich structure has high EMI SE with less metal content,which can provide guidelines for the development of high-performance EMI polymeric films with potentials in wearable devices and equipment.展开更多
The hypercompressor is one of the core facilities in low density polyethylene production,with a discharge pressure of approximately 300 MPa.A packing cup is the basic unit of cylinder packing,assembled by the interfer...The hypercompressor is one of the core facilities in low density polyethylene production,with a discharge pressure of approximately 300 MPa.A packing cup is the basic unit of cylinder packing,assembled by the interference fit between an inner cup and an outer cup.Because the shrink-fitting prestresses the packing cup,serious design is needed to gain a favorable stress state,for example,a tri-axial compressive stress state.The traditional method of designing the interference fit value for packing cups depends on the shrink-fit theory for thickwalled cylinder subject to internal and external pressure.According to the traditional method,critical points are at the inner radii of the inner and external cup.In this study,the finite element method(FEM)has been implementcd to determine a more accurate stress level of packing cups.Different critical points have been found at the edge of lapped sealing surfaces between two adjacent packing cups.The maximum Von Mises equivalent stress in a packing cup increases after a decline with the rise of the interference fit value.The maximum equivalent stress initially occurs at the bore of the inner cup,then at the edge of lapped mating surfaces,and finally at the bore of the outer cup,as the interference radius increases.The traditional method neglects the influence of axial preloading on the interference mating pressure.As a result,it predicts a lower equivalent stress at the bore of the external cup.A higher interference fit value accepted by the traditional method may not be feasible as it might already make packing cups yield at the edge of mating surfaces or the bore of the external cup.Along with fatigue analysis,the feasible range of interference fit value has been modified by utilizing FEM.The modified range tends to be narrower and safer than the one derived from the traditional method,after getting rid of shrink-fit values that could result in yielding in a real packing cup.展开更多
The combined and interactive effects of the bolt-hole fit conditions and the preloads of the fasteners on the load carrying capacity of single-lap composite-to-titanium bolted joints have been investigated both experi...The combined and interactive effects of the bolt-hole fit conditions and the preloads of the fasteners on the load carrying capacity of single-lap composite-to-titanium bolted joints have been investigated both experimentally and numerically. Quasi-static tests of the hybrid joints with different fit conditions are implemented, and a three dimensional finite element progressive failure analysis model is proposed to predict the influences of the bolt-hole fit conditions and fastener's pre- loads on the mechanical behaviors of the joints. Based on the experimental validated simulation method, a multi-factor, mixed levels orthogonal design table and the analysis of variance method are used to arrange the simulation conditions and to further study the interactive effects of preloads and fit conditions. Through the analysis of the results, for the researched double bolt, single-lap composite-titanium joints, it is found that: the effects of both the interference fit and the preloads change from positive into negative mode with the increase of the interference fit values or preload values; appropriate bolt-hole fit conditions and preloads can improve the bolt-hole contact conditions of the loaded joints, and then retard the fiber failures around the fastener holes, and increase the load carrying capacity of the joints eventually; the interactive effect of the bolt-hole interference fit conditions and preloads cannot be ignored and the parameters need to be considered together and synthetically as the joints are being optimized.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0601602)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2017FZA3005 and 2018FZA3005)
文摘Ellipse fitting is a useful tool to obtain the differential signal of two atom interference gravimeters. The quality standard of ellipse fitting should be the deviation between the true phase and the fitting phase of the interference fringe. In this paper, we present a new algorithm to fit the ellipse. The algorithm is to minimize the differential noise of two interference gravimeters and obtain a more accurate value of the gravity gradient. We have theoretically derived the expression of the differential-mode noise and implemented the ellipse fitting in the program. This new algorithm is also compared with the classical methods.
基金Supported by National Natural Science Foundation of China (Grant No.51405121)。
文摘After remanufacturing disassembly,several kinds of friction damages can be found on the mating surface of interference fit.These damages should be repaired and the cost is closely related to the severity of damages.Inspired by the excellent performance of surface texture in wear reduction,5 shapes of pit array textures are added to the specimens’surface to study their reduction effect of disassembly damage for interference fit.The results of disassembly experiments show that the order of influence of texture parameters on disassembly damage is as follows:equivalent circle diameter of single texture,texture shape and texture surface density.The influence of equivalent circle diameter of single texture and texture shape are obviously more significant than that of texture surface density.The circular texture with a surface density of 30%and a diameter of 100μm shows an excellent disassembly damage reduction effect because of its perfect ability of abrasive particle collection.And the probability of disassembly damage formation and evolution is also relatively small on this kind of textured surface.Besides,the load-carrying capacity of interference fit with the excellent texture is confirmed by load-carrying capacity experiments.The results show that the load-carrying capacity of the excellent texture surface is increased about 40%compared with that of without texture.This research provides a potential approach to reduce disassembly damage for interference fit.
基金Supported by the National Natural Science Foundation of China(51105200)
文摘Interference fit riveting is an effective way to improve the fatigue life of aircraft.The accurate control of riveting interference of aircraft automatic drilling and riveting equipment is achieved by process parameters including upsetting force and upset head height.It is valuable for aircraft manufacturing engineering.An approach to interference riveting process control based on the analysis of interference riveting stress field is proposed.According to assembly structure,the upsetting force is calculated by the material property and interference fit level,and the upset head height is deduced by the upsetting force.The experimental result shows that the interference fit level can be controlled accurately by the upsetting force and upset head height,and then,the quality of aircraft automatic riveting can be improved.The proposed approach is verified by the good match between the predicted result and the experimental result.
文摘The lifetime of roll-bits with inserted tooth will be obviously decreased while drilling in strata and the tungsten carbide can be integrally separated from the roll-cone,which will need more trip out time to replace the roller bit.This study provides an entire analysis on stress as well as strength for teeth and tooth holes in loaded conditions.Qualities of tooth drop from matrix within roller bit.The optimized interferences of teeth inserted into the bit can be reasonably obtained by the critical interference derived from some relevant influence factors on the tooth-fixing quality of roller bits.
基金Supported by Hunan Provincial Natural Science Foundation of China(Grant No.2018JJ4006)National Independent Innovation Demonstration Area Foundation of Changsha Zhuzhou Xiangtan(Grant No.2018XK2302)
文摘When the gearbox body interference is connected to the ring gear, prestressing occurs in the ring gear, which has a significant impact on the strength and life of the gear. Research on the prestressing of the inner ring gear is in the preliminary stage, and the distribution rule of the prestressing and the influence of each parameter on the interference prestressing have not been derived. In this paper, based on the method of calculating the prestressing of the thick cylinder in interference fit, the ring gear is found to be equivalent to a thick cylinder, and the distribution rule of prestressing of the ring gear in the interference fit is inferred. Then, by modeling and analyzing the gearbox body and ring gear in the interference fit using ABAQUS, the distribution rule of prestressing the ring gear in the interference fit is obtained through a numerical simulation. Finally, the prestressing of the ring gear in the interference fit is measured using X-ray di raction, and the distribution rule of prestressing of the ring gear in the interference fit is obtained through analysis. Compared with the distribution rule of prestressing in theory, numerical simulation, and experiment, the theoretical distribution rule of prestressing is amended through a statistical method, and a more accurate formula of prestressing is obtained. Through the calculation of the stress and bending moment in the dangerous section of the ring gear through prestressing, the formula for checking the tooth root flexural fatigue strength in the interference fit prestressing is inferred. This research proposes a tooth root bending strength conditional formula for the inner ring gear of the interference fit, which serves as a guide for the design and production of the actual interference joint inner ring gear.
基金Project(2011BAF15B00)supported by the National Science and Technology Support Plan of ChinaProject(E2011203004)supported by the Hebei Provincial Natural Science Iron and Steel Joint Research Fund Program,China
文摘For entire roller embedded shapemeter roll, the relationship between the value of interference fit and the sensor pre-pressure, and the pressure transfer performance of shapemeter roll were analyzed by elasticity theory during the cold reversible rolling process. Considering the influence of strip temperature on the interference fit, the distributions of contact pressure of the framework's top surface and the sensor pre-pressure on different values of interference fit were analyzed by the finite element technology. The results show that the contact pressure of the framework's top surface and the sensor pre-pressure increase with the increase of the value of interference fit. When the value of interference fit is between 0.05 mm and 0.09 mm, roll body's inner hole surface, the framework and pressure magnetic sensitive component don't separate from each other, and the sensor works in the linear segment of characteristic curve, so the normal operation of shapemeter roll is guaranteed.
基金Supported by the Natural Science Foundation of China (50575155) The authors would like to thank for the support of National Natural Science Foundation (50575155)
文摘Oil film bearing,which works on thin film between sleeve and bush,is widely used in steel industry due to the characteristics of high efficiency and low noise,etc. The backup roll of 1 580PC hot strip mill invested by some steel corporation has been equipped with such bearing. During the process of setup&disassembly and usage period,the sleeve has been dramatically damaged,which results in production accidents and decreases its service life,thus heavily influencing steel production. Aimed at such puzzles,under specific loadcase,mechanical properties of bearing sleeve,as well as estimation of contact status and adhesive force of sleeve by interference fit,are quantitatively simulated by finite element method,which establishes an mechanical foundation for improving the load capacity of bearing and decreasing its wear and adhesion damages. Finally,some measures and conclusions are drawn.
文摘The letter presents an analysis of interference fit of the electric spindle at different rotor speeds due to the influence of centrifugal force and provide<span style="font-family:;" "="">s</span><span style="font-family:;" "=""> a theoretical formula showing the relationship of the speed, stress on the rotation speed. The letter a</span><span style="font-family:Verdana;"></span><span style="font-family:;" "="">lso established a finite element model of the interference fit. The study found that as the rotation speed increases, the interference and contact stress between the spindle and the rotor gradually decrease, and the reduced speed is proportional to the square of the rotation speed.</span>
文摘Within offshore installations, making tubing connections conduct electricity is a developing interest. Being able to use tubing structures to carry the drive power needed downhole avoids installation of cables and lines. The challenge is making the connection good enough with minimum possible power loss. At the same time, the connection has to secure the transfer of the rated power without any danger of overheating. An overheating can eventually result in a welded connection. Previous studies on contact design have mainly focused on low level contact force, while this study aims to find out the influence of surface roughness and connection strength, at macro level, on contact resistance of tubing connections so as to know the power transfer capability of the connection. First, the connection is simplified by "rolling out" the tubes to flat sheet metals and the voltage drop at rated current was measured at various loads. Then experiment was conducted on contact pairs with two different surface finish qualities and three different contact fits. The results show that smoother surfaces ease the flow of current while high interference fit increases the contact stability. The influence of surface topography becomes insignificantly low at high connection interference.
基金the Fund of Natural Science Founda-tion of Shaanxi Provincial(No.2021JQ-111)the Fund of Basic and Applied Fundamental Research of Guangdong Provincial(No.2020A1515110861).
文摘The design and fabrication of electromagnetic interference shielding films with a novel structure to eliminate undesirable electromagnetic pollution is an important research direction.However,it is still a challenge to combine and organize nanofillers in different dimensions into the structured network in polymer-based electromagnetic interference(EMI)shielding composites.In this work,a sandwich struc-ture polyimide(PI)composite film with alternative 2D-MXene network and 1D-Silver nanowires(Ag NWs)network was prepared through the“electrospinning-immersion-hot pressing”method.With the increase of Ag NWs content,the EMI shielding effectiveness(SE)gradually increases while maintaining good flexibility and mechanical robustness.The EMI SE and the tensile strength of 150μm thick sand-wich composite film can reach up to 79.54 dB and 39.82 MPa,respectively.The prepared flexible and robust PI composite film with a sandwich structure has high EMI SE with less metal content,which can provide guidelines for the development of high-performance EMI polymeric films with potentials in wearable devices and equipment.
文摘The hypercompressor is one of the core facilities in low density polyethylene production,with a discharge pressure of approximately 300 MPa.A packing cup is the basic unit of cylinder packing,assembled by the interference fit between an inner cup and an outer cup.Because the shrink-fitting prestresses the packing cup,serious design is needed to gain a favorable stress state,for example,a tri-axial compressive stress state.The traditional method of designing the interference fit value for packing cups depends on the shrink-fit theory for thickwalled cylinder subject to internal and external pressure.According to the traditional method,critical points are at the inner radii of the inner and external cup.In this study,the finite element method(FEM)has been implementcd to determine a more accurate stress level of packing cups.Different critical points have been found at the edge of lapped sealing surfaces between two adjacent packing cups.The maximum Von Mises equivalent stress in a packing cup increases after a decline with the rise of the interference fit value.The maximum equivalent stress initially occurs at the bore of the inner cup,then at the edge of lapped mating surfaces,and finally at the bore of the outer cup,as the interference radius increases.The traditional method neglects the influence of axial preloading on the interference mating pressure.As a result,it predicts a lower equivalent stress at the bore of the external cup.A higher interference fit value accepted by the traditional method may not be feasible as it might already make packing cups yield at the edge of mating surfaces or the bore of the external cup.Along with fatigue analysis,the feasible range of interference fit value has been modified by utilizing FEM.The modified range tends to be narrower and safer than the one derived from the traditional method,after getting rid of shrink-fit values that could result in yielding in a real packing cup.
文摘The combined and interactive effects of the bolt-hole fit conditions and the preloads of the fasteners on the load carrying capacity of single-lap composite-to-titanium bolted joints have been investigated both experimentally and numerically. Quasi-static tests of the hybrid joints with different fit conditions are implemented, and a three dimensional finite element progressive failure analysis model is proposed to predict the influences of the bolt-hole fit conditions and fastener's pre- loads on the mechanical behaviors of the joints. Based on the experimental validated simulation method, a multi-factor, mixed levels orthogonal design table and the analysis of variance method are used to arrange the simulation conditions and to further study the interactive effects of preloads and fit conditions. Through the analysis of the results, for the researched double bolt, single-lap composite-titanium joints, it is found that: the effects of both the interference fit and the preloads change from positive into negative mode with the increase of the interference fit values or preload values; appropriate bolt-hole fit conditions and preloads can improve the bolt-hole contact conditions of the loaded joints, and then retard the fiber failures around the fastener holes, and increase the load carrying capacity of the joints eventually; the interactive effect of the bolt-hole interference fit conditions and preloads cannot be ignored and the parameters need to be considered together and synthetically as the joints are being optimized.