Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific p...Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity(GCC), kinematic pair complexity(KPC), and type complexity(TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.展开更多
The effects of Si content on combinations of important properties such as hardness, hardenability, and weldability in addition to strength increment were systematically investigated to develop a Mo and V free low allo...The effects of Si content on combinations of important properties such as hardness, hardenability, and weldability in addition to strength increment were systematically investigated to develop a Mo and V free low alloy cast steel for automobile cold pressing die insert. For the evaluation of the applicability as the die insert, the mechanical properties were measured after spheroidization annealing (SA), quenching and tempering (Q/T), and flame hardening (FH) treatments, respectively. The developed 0.8%-1.6%Si containing Mo and V free alloy cast steels showed excellent matrix strengthening effect, hardenability, and weldability, fulfilling the industrial criterion of the mechanical properties for the die insert.展开更多
Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with ...Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with and without nano-TiN addition fabricated by PIM and die pressing were analyzed. It is demonstrated that for either PIM or die pressing, the porosities are obviously reduced, the mechanical properties are significantly improved after adding nano-TiN, and the hard particles are refined; the rim phase thickness obviously becomes thinner, and the number of dimples in fracture also increases. Compared the samples fabricated by die pressing, it is difficult for PIM to obtain dense Ti(C,N)-based cermets. Due to the too much existence of pores and isolated carbon, the mechanical properties of the sintered samples by PIM are inferior to those of the sintered ones by die pressing.展开更多
Pressing process is a manufacturing method that obtained work piece with certain dimension, shape and capability through die forcing roughcast to produce plastic deformation or separate. This paper focuses on the key ...Pressing process is a manufacturing method that obtained work piece with certain dimension, shape and capability through die forcing roughcast to produce plastic deformation or separate. This paper focuses on the key problems of visualization simulation in pressing die. The final aim is that numerical simulation system can simulate the process of processing forming technique, which can supply some necessary and accurate key parameters for die design. The detail description of mechanical characteristic and key technique of sheet forming technique is discussed. Pressing forming method is one of the most important forming techniques of metal forming, which has special mechanical characteristics. The character of sheet pressing forming is that the deformation of thickness direction is very small in contrast to other directions. The deformation mode of sheet forming mainly has the following kinds: bi-directional stretch, plane stress, stretches, depths extend, bending and counter-bending. The essence of press forming is the transferring course that the transferring region of rough comes to deformation by outside force, which is main researching principle in forming and the transferring field. The analysis of pressing forming course, disclose the feature of stress-strain and their changing rule, then pressing process and forming parameters could be obtained. So the states of force and deformation of transferring region is key to determine character about the varieties of pressing transferring. The paper analyzes these factors, which may influence forming precision in pressing process. In traditional methods, some key parameter such as spring-back, bending radius for die design are calculated by experience formula or select from data table. The paper brings forward the calculation methods of key parameter in the case of drawing finite element method and numerical simulation into pressing die design. In order to calculate the value of key parameters based on data supplied by FEM, a numerical simulation application is finished combined with two descriptions of work piece deformation NURBS and discrete piece. The numerical simulation is programmed on Microsoft Visual C++ with OpenGL as the graphics tool. It establishes numerical simulation program, dynamically simulates the process of sheet pressing figuration, and gets good effects.展开更多
The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control...The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control in parameters of forming process, the paper explored the humanoid based intelligence control strategy. In the paper, it made the anatomy in control puzzle resulted in uncertainty such as chemical component of plastic cement etc., summarized up the characteristic of cybernetics in forming process, researched on the humanoid based intelligence control strategy, and constructed the control algorithm of forming process in plastic cement work-piece. Taking the process experiment of temperature and pressure control as an example, it validated the good dynamic and static control quality through simulation of control algorithm constructed in this paper. The experimental results show that the control algorithm explored in this paper is reasonably available.展开更多
At the China International Food Packing Machinery Exhibition, the new model die set for PET plastic jet-mouldingmachine developed by the Zhejiang Province Taizhou Municipality Huangyan Sanyou Plastics Factory attracte...At the China International Food Packing Machinery Exhibition, the new model die set for PET plastic jet-mouldingmachine developed by the Zhejiang Province Taizhou Municipality Huangyan Sanyou Plastics Factory attracted the attention of numerous domestic and foreign clients. They rushed to the stand in great numbers for consultation and talks on ordering. According to the evaluation of the experts concerned, the die set is the most advanced one nationwide for PET plastic jet-moulding machinery.展开更多
The NiAl-28Cr-5.85Mo-0.15Hf alloy was prepared by high-pressure die casting (HPDC) and subsequent hot isostatic pressing(HIP), and tested for compressible strength and fracture behavior at 300-1 373 K. The results sho...The NiAl-28Cr-5.85Mo-0.15Hf alloy was prepared by high-pressure die casting (HPDC) and subsequent hot isostatic pressing(HIP), and tested for compressible strength and fracture behavior at 300-1 373 K. The results show that the elevated temperature 0.2% compressible yield strength as well as the room-temperature compressible fracture strain of as-HIP alloy are larger than those of the same alloy prepared by directional solidification (DS). It suggests that the fine structures with a homogeneous distribution of fine Cr (Mo) and Hf-rich phase created by high-pressure die casting lead to these improvements.展开更多
The rapid development of aviation and aerospace technologies has led to increased interest in the application of numerically controlled(NC) technology for bending light-weight titanium alloy tubes.In order to study an...The rapid development of aviation and aerospace technologies has led to increased interest in the application of numerically controlled(NC) technology for bending light-weight titanium alloy tubes.In order to study and develop advanced NC bending technology,it is necessary to understand the bending performance of medium strength TA18(Ti-3Al-2.5V,ASTM Gr.9) titanium alloy tubes during NC bending under different die sets.This paper focuses on the bending performance of medium strength TA18 tubes under different NC bending die sets,including the variations in the stress,strain,wall thickness,cross sectional deformation,and defects.The results show that adding a wiper die to the base die set decreases the radial,hoop,and tangential compressive stress and the tangential compressive strain,and adding a mandrel to the base die set also decreases these stresses,but increases the radial and hoop tensile stress and decreases the hoop compressive strain obviously,and brings about a three-dimensional tensile stress concentration where the mandrel provides support.For the NC bending of medium strength TA18 tubes,the flattening of cross section is more sensitive index than the thinning of wall thickness.Introducing a mandrel can improve the flattening of cross section obviously but it has a little worse effect on the thinning of wall thickness,and adding a wiper die to the base die set can inhibit the occurrence of the inside bulge but worsen the flattening of the cross section remarkably.Considering the above effects of the mandrel and wiper die on bending performance,it is reasonable to apply the die set comprising a bending die,clamp die,and pressure die for tubes with a small diameter and the die set including an appropriate mandrel additionally for tubes with a larger diameter,in order to bend the medium strength TA18 tubes with high quality and at low cost.展开更多
Titanium carbonitride based composite (TiCN-metallic binder) was developed as die material for replacement of cemented tungsten carbide. The effects of thermal conductivity characteristic of the TiCN composite on ho...Titanium carbonitride based composite (TiCN-metallic binder) was developed as die material for replacement of cemented tungsten carbide. The effects of thermal conductivity characteristic of the TiCN composite on hot forging performances were investigated using a servo press with ram motion control. Three types of the die materials; (a) tool steel for hot working, (b) cemented tungsten carbide with high thermal conductivity and (c) TiCN composite with low thermal conductivity were compared. In hot upsetting of a chrome steel workpiece, the TiCN composite die was confirmed to reduce the forging load by approximately 20% at slow forging speed. This is because the die with low thermal conductivity could prevent the workpiece from rapid cooling induced by heat transfer at the die-workpiece interface. In addition, the material flow of the workpiece to a die cavity was improved. Furthermore, the wear depth/wear coefficient of the TiCN composite was lower than that of the tool steel and the cemented tungsten carbide in the numerical analysis of wear due to the combination of low thermal conductivity and high hardness.展开更多
Dr. Zhao Honored Dr. Zhao Xuefang is in charge of the Obstetrics/Gynecology Department of the Changzhi City People’s Hospital in Shanxi Province. On April 23, 1994, she received from the hands of Qian Zhengying, Vice...Dr. Zhao Honored Dr. Zhao Xuefang is in charge of the Obstetrics/Gynecology Department of the Changzhi City People’s Hospital in Shanxi Province. On April 23, 1994, she received from the hands of Qian Zhengying, Vice-Chairman of Chinese People’s Political Consultative Conference, the first Norman Bethune Medal, granted by the Ministry of Public Health and the Ministry of Labor and Personnel. Since Dr. Zhao began working in the medical field in 1963, she has continued to improve her techniques. After more than 30 years in medicine, she has treated thousands of patients without incident. Though Dr. Zhao has been diagnosed with cancer and has had two operations, she has continued to heal the wounded and rescue the dying. Her only wish is to relieve the pain of more patients as long as she can. —China Women’s展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035501)National Natural Science Foundation of China(Grant Nos.51421092,51335007,51323005,51205248)+1 种基金Shanghai Municipal Natural Science Foundation,China(Grant No.12ZR1445200)Doctoral Program Foundation of Ministry of Education of China(Grant No.20120073120060)
文摘Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity(GCC), kinematic pair complexity(KPC), and type complexity(TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.
文摘The effects of Si content on combinations of important properties such as hardness, hardenability, and weldability in addition to strength increment were systematically investigated to develop a Mo and V free low alloy cast steel for automobile cold pressing die insert. For the evaluation of the applicability as the die insert, the mechanical properties were measured after spheroidization annealing (SA), quenching and tempering (Q/T), and flame hardening (FH) treatments, respectively. The developed 0.8%-1.6%Si containing Mo and V free alloy cast steels showed excellent matrix strengthening effect, hardenability, and weldability, fulfilling the industrial criterion of the mechanical properties for the die insert.
基金the National Natural Science Foundation of China (No. 51172018)the Kennametal, Inc. for the fnancial support
文摘Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with and without nano-TiN addition fabricated by PIM and die pressing were analyzed. It is demonstrated that for either PIM or die pressing, the porosities are obviously reduced, the mechanical properties are significantly improved after adding nano-TiN, and the hard particles are refined; the rim phase thickness obviously becomes thinner, and the number of dimples in fracture also increases. Compared the samples fabricated by die pressing, it is difficult for PIM to obtain dense Ti(C,N)-based cermets. Due to the too much existence of pores and isolated carbon, the mechanical properties of the sintered samples by PIM are inferior to those of the sintered ones by die pressing.
文摘Pressing process is a manufacturing method that obtained work piece with certain dimension, shape and capability through die forcing roughcast to produce plastic deformation or separate. This paper focuses on the key problems of visualization simulation in pressing die. The final aim is that numerical simulation system can simulate the process of processing forming technique, which can supply some necessary and accurate key parameters for die design. The detail description of mechanical characteristic and key technique of sheet forming technique is discussed. Pressing forming method is one of the most important forming techniques of metal forming, which has special mechanical characteristics. The character of sheet pressing forming is that the deformation of thickness direction is very small in contrast to other directions. The deformation mode of sheet forming mainly has the following kinds: bi-directional stretch, plane stress, stretches, depths extend, bending and counter-bending. The essence of press forming is the transferring course that the transferring region of rough comes to deformation by outside force, which is main researching principle in forming and the transferring field. The analysis of pressing forming course, disclose the feature of stress-strain and their changing rule, then pressing process and forming parameters could be obtained. So the states of force and deformation of transferring region is key to determine character about the varieties of pressing transferring. The paper analyzes these factors, which may influence forming precision in pressing process. In traditional methods, some key parameter such as spring-back, bending radius for die design are calculated by experience formula or select from data table. The paper brings forward the calculation methods of key parameter in the case of drawing finite element method and numerical simulation into pressing die design. In order to calculate the value of key parameters based on data supplied by FEM, a numerical simulation application is finished combined with two descriptions of work piece deformation NURBS and discrete piece. The numerical simulation is programmed on Microsoft Visual C++ with OpenGL as the graphics tool. It establishes numerical simulation program, dynamically simulates the process of sheet pressing figuration, and gets good effects.
文摘The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control in parameters of forming process, the paper explored the humanoid based intelligence control strategy. In the paper, it made the anatomy in control puzzle resulted in uncertainty such as chemical component of plastic cement etc., summarized up the characteristic of cybernetics in forming process, researched on the humanoid based intelligence control strategy, and constructed the control algorithm of forming process in plastic cement work-piece. Taking the process experiment of temperature and pressure control as an example, it validated the good dynamic and static control quality through simulation of control algorithm constructed in this paper. The experimental results show that the control algorithm explored in this paper is reasonably available.
文摘At the China International Food Packing Machinery Exhibition, the new model die set for PET plastic jet-mouldingmachine developed by the Zhejiang Province Taizhou Municipality Huangyan Sanyou Plastics Factory attracted the attention of numerous domestic and foreign clients. They rushed to the stand in great numbers for consultation and talks on ordering. According to the evaluation of the experts concerned, the die set is the most advanced one nationwide for PET plastic jet-moulding machinery.
基金Project (05YB31) supported by the Scientific Research Initial Foundation for Doctor of Shenyang Institute of Aeronautical Engineering,China
文摘The NiAl-28Cr-5.85Mo-0.15Hf alloy was prepared by high-pressure die casting (HPDC) and subsequent hot isostatic pressing(HIP), and tested for compressible strength and fracture behavior at 300-1 373 K. The results show that the elevated temperature 0.2% compressible yield strength as well as the room-temperature compressible fracture strain of as-HIP alloy are larger than those of the same alloy prepared by directional solidification (DS). It suggests that the fine structures with a homogeneous distribution of fine Cr (Mo) and Hf-rich phase created by high-pressure die casting lead to these improvements.
基金supported by the Program for New Century Excellent Talents in University of China (NCET-08-0462)the Fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. KP200919)the 111 Project of China (B08040)
文摘The rapid development of aviation and aerospace technologies has led to increased interest in the application of numerically controlled(NC) technology for bending light-weight titanium alloy tubes.In order to study and develop advanced NC bending technology,it is necessary to understand the bending performance of medium strength TA18(Ti-3Al-2.5V,ASTM Gr.9) titanium alloy tubes during NC bending under different die sets.This paper focuses on the bending performance of medium strength TA18 tubes under different NC bending die sets,including the variations in the stress,strain,wall thickness,cross sectional deformation,and defects.The results show that adding a wiper die to the base die set decreases the radial,hoop,and tangential compressive stress and the tangential compressive strain,and adding a mandrel to the base die set also decreases these stresses,but increases the radial and hoop tensile stress and decreases the hoop compressive strain obviously,and brings about a three-dimensional tensile stress concentration where the mandrel provides support.For the NC bending of medium strength TA18 tubes,the flattening of cross section is more sensitive index than the thinning of wall thickness.Introducing a mandrel can improve the flattening of cross section obviously but it has a little worse effect on the thinning of wall thickness,and adding a wiper die to the base die set can inhibit the occurrence of the inside bulge but worsen the flattening of the cross section remarkably.Considering the above effects of the mandrel and wiper die on bending performance,it is reasonable to apply the die set comprising a bending die,clamp die,and pressure die for tubes with a small diameter and the die set including an appropriate mandrel additionally for tubes with a larger diameter,in order to bend the medium strength TA18 tubes with high quality and at low cost.
文摘Titanium carbonitride based composite (TiCN-metallic binder) was developed as die material for replacement of cemented tungsten carbide. The effects of thermal conductivity characteristic of the TiCN composite on hot forging performances were investigated using a servo press with ram motion control. Three types of the die materials; (a) tool steel for hot working, (b) cemented tungsten carbide with high thermal conductivity and (c) TiCN composite with low thermal conductivity were compared. In hot upsetting of a chrome steel workpiece, the TiCN composite die was confirmed to reduce the forging load by approximately 20% at slow forging speed. This is because the die with low thermal conductivity could prevent the workpiece from rapid cooling induced by heat transfer at the die-workpiece interface. In addition, the material flow of the workpiece to a die cavity was improved. Furthermore, the wear depth/wear coefficient of the TiCN composite was lower than that of the tool steel and the cemented tungsten carbide in the numerical analysis of wear due to the combination of low thermal conductivity and high hardness.
文摘Dr. Zhao Honored Dr. Zhao Xuefang is in charge of the Obstetrics/Gynecology Department of the Changzhi City People’s Hospital in Shanxi Province. On April 23, 1994, she received from the hands of Qian Zhengying, Vice-Chairman of Chinese People’s Political Consultative Conference, the first Norman Bethune Medal, granted by the Ministry of Public Health and the Ministry of Labor and Personnel. Since Dr. Zhao began working in the medical field in 1963, she has continued to improve her techniques. After more than 30 years in medicine, she has treated thousands of patients without incident. Though Dr. Zhao has been diagnosed with cancer and has had two operations, she has continued to heal the wounded and rescue the dying. Her only wish is to relieve the pain of more patients as long as she can. —China Women’s