As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and l...As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.展开更多
Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC d...Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC devices are presented.The technologies and challenges for HV SiC device application in converter design are discussed.The state-of-the-art applications of HV SiC devices are also reviewed.展开更多
High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch...High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch. In this study, the RSD turn-on conditions were investigated by numerical analysis and device simulation as well as the experiments conducted to validate the turn-on conditions. A design of a triggering high-voltage RSD is presented based on a saturable transformer.展开更多
The semiconductor laser array with single-mode emission is presented in this paper.The 6-μm-wide ridge waveguides(RWGs)are fabricated to select the lateral mode.Thus the fundamental mode of laser array can be obtaine...The semiconductor laser array with single-mode emission is presented in this paper.The 6-μm-wide ridge waveguides(RWGs)are fabricated to select the lateral mode.Thus the fundamental mode of laser array can be obtained by the RWGs.And the maximum output power of single-mode emission can reach 36 W at an injection current of 43 A,after that,a kink will appear.The slow axis(SA)far-field divergence angle of the unit is 13.65.The beam quality factor M;of the units determined by the second-order moment(SOM)method,is 1.2.This single-mode emission laser array can be used for laser processing.展开更多
A series connected power semiconductor array, with digital control capability could be used for developing single phase AC regulators or other applications such as AC electronic loads. This technique together with an ...A series connected power semiconductor array, with digital control capability could be used for developing single phase AC regulators or other applications such as AC electronic loads. This technique together with an ordinary gapless transformer could be used to develop a low cost AC voltage regulator (AVR) to provide better or comparable specifications with bulky ferro-resonant AVR types. One primary advantage of the technique is that digital control can be used to minimize harmonics. Commencing with a review of AC voltage regulator techniques for single phase power conditioning systems, an analysis and design aspects of this technique is presented with experimental results for AVRs. Guidelines on how to utilize the technique in a generalized basis is also summarized together with a summary of a technique for achieving harmonic control.展开更多
Superjunction(SJ)is one of the most innovative concepts in the field of power semiconductor devices and is often referred to as a"milestone"in power MOS.Its balanced charge field modulation mechanism breaks ...Superjunction(SJ)is one of the most innovative concepts in the field of power semiconductor devices and is often referred to as a"milestone"in power MOS.Its balanced charge field modulation mechanism breaks through the strong dependency between the doping concentration in the drift region and the breakdown voltage V_(B)in conventional devices.This results in a reduction of the trade-off relationship between specific on-resistance R_(on,sp)and V_(B)from the conventional R_(on,sp)∝V_(B)^(2.5)to R_(on,sp)∝W·V_(B)^(1.32),and even to R_(on,sp)∝W·V_(B)^(1.03).As the exponential term coefficient decreases,R_(on,sp)decreases with the cell width W,exhibiting a development pattern reminiscent of"Moore's Law".This paper provides an overview of the latest research developments in SJ power semiconductor devices.Firstly,it introduces the minimum specific on-resistance R_(on,min)theory of SJ devices,along with its combination with special effects like 3-D depletion and tunneling,discussing the development of R_(on,min)theory in the wide bandgap SJ field.Subsequently,it discusses the latest advancements in silicon-based and wide bandgap SJ power devices.Finally,it introduces the homogenization field(HOF)and high-K voltage-sustaining layers derived from the concept of SJ charge balance.SJ has made significant progress in device performance,reliability,and integration,and in the future,it will continue to evolve through deeper integration with different materials,processes,and packaging technologies,enhancing the overall performance of semiconductor power devices.展开更多
It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of th...It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of the discharge, providing their high propagation velocity down to v- 5 ×10^9 sm/s, the crystallographic orientation, filamentary character at thickness of the channel about 1 μm and absence of destructions of a crystal.展开更多
A 37. 5 MHz differential complementary metal oxide semiconductor (CMOS) crystal oscillator with low power and low phase noise for the radio frequency tuner of digital radio broadcasting digital radio mondiale (DRAM...A 37. 5 MHz differential complementary metal oxide semiconductor (CMOS) crystal oscillator with low power and low phase noise for the radio frequency tuner of digital radio broadcasting digital radio mondiale (DRAM) and digital audio broadcasting (DAB) systems is realized and characterized. The conventional cross-coupled n-type metal oxide semiconductor (NMOS) transistors are replaced by p-type metal oxide semiconductor (PMOS) transistors to decrease the phase noise in the core part of the crystal oscillator. A symmetry structure of the current mirror is adopted to increase the stability of direct current. The amplitude detecting circuit made up of a single- stage CMOS operational transconductance amplifier (OTA) and a simple amplitude detector is used to improve the current accuracy of the output signals. The chip is fabricated in a 0. 18- pxn CMOS process, and the total chip size is 0. 35 mm x 0. 3 mm. Under a supply voltage of 1.8 V, the measured power consumption is 3.6 mW including the output buffer for 50 testing loads. The proposed crystal oscillator exhibits a low phase noise of - 134. 7 dBc/Hz at 1-kHz offset from the center frequency of 37. 5 MHz.展开更多
A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivat...A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.展开更多
Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the impr...Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the improved working efficiency of the large amounts of pulse modulesand accurate requirements for the power coherent combining applications. This paper presents a trigger generator based on a laser diodetriggered GaAs photoconductive semiconductor switch (PCSS) with low jitter and compact size characteristics. It avoids the high currentsthat are harmful to high-gain mode PCSSs. In the trigger circuit, a 200 pF capacitor is charged by a microsecond-scale 18 kV pulse and thendischarged via the high-gain mode GaAs PCSS to trigger the high-power trigatron switch. When triggered by the ~10 ns pulse generated by thePCSS, the DC-charged trigatron can operate in the 20e35 kV range with 10 ns rise time and 1 ns delay-time jitter.展开更多
Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. The...Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degen- erated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic be- haviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design.展开更多
Different switching frequencies are required when SiC metal-oxide-semiconductor field-effect transistors(MOSFETs)are switching in a space environment.In this study,the total ionizing dose(TID)responses of SiC power MO...Different switching frequencies are required when SiC metal-oxide-semiconductor field-effect transistors(MOSFETs)are switching in a space environment.In this study,the total ionizing dose(TID)responses of SiC power MOSFETs are investigated under different switching frequencies from 1 kHz to 10 MHz.A significant shift was observed in the threshold voltage as the frequency increased,which resulted in premature failure of the drain-source breakdown voltage and drain-source leakage current.The degradation is attributed to the high activation and low recovery rates of traps at high frequencies.The results of this study suggest that a targeted TID irradiation test evaluation method can be developed according to the actual switching frequency of SiC power MOSFETs.展开更多
The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the...The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.展开更多
The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,th...The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,there are a few different points.An SOA in front of the tunable laser should be polarization dependent and has low optical confinement factor.To obtain wide gain bandwidth at the threshold current,the gain chip used in the tunable laser cavity should be something between SOA and fixed-wavelength laser design,while the fixed-wavelength laser has high optical confinement factor.Detailed discussion is given with basic equations and some simulation results on saturation power of the SOA and gain bandwidth of gain chip are shown.展开更多
In recent years,solution-processible semiconductors with perovskite or perovskite-inspired structures have been extensively investigated for optoelectronic applications.In particular,silver-bismuth-halides have been i...In recent years,solution-processible semiconductors with perovskite or perovskite-inspired structures have been extensively investigated for optoelectronic applications.In particular,silver-bismuth-halides have been identified as especially promising because of their bulk properties and lack of heavily toxic elements.This study investigates the potential of Ag2BiI5 for near-infrared(NIR)-blind visible light photodetection,which is critical to emerging applications(e.g.,wearable optoelectronics and the Internet of Things).Self-powered photodetectors were realized and provided a near-constant≈100 mA W−1 responsivity through the visible,a NIR rejection ratio of>250,a long-wavelength responsivity onset matching standard colorimetric functions,and a linear photoresponse of>5 orders of magnitude.The optoelectronic characterization of Ag2BiI5 photodetectors additionally revealed consistency with one-center models and the role of the carrier collection distance in self-powered mode.This study provides a positive outlook of Ag2BiI5 toward emerging applications on low-cost and low-power NIR-blind visible light photodetector.展开更多
The characteristics of low frequency electrical noise, voltage current ( V I ) and electrical derivation for 980 nm InGaAsP/InGaAs/GaAs high power double quantum well lasers(DQWLs) are measured under different conditi...The characteristics of low frequency electrical noise, voltage current ( V I ) and electrical derivation for 980 nm InGaAsP/InGaAs/GaAs high power double quantum well lasers(DQWLs) are measured under different conditions. The correlation of the low frequency electrical noise with surface non radiative current of devices is discussed. The results indicate the low frequency electrical noise of 980 nm DQWLs with high power is mainly 1/ f noise and has good relation with the device surface current at low injection.展开更多
Using the ray trace method, three-section semiconductor lasers are studied. An analytic expression of output power for the three-section semiconductor lasers is derived for the first time. From this expression, thresh...Using the ray trace method, three-section semiconductor lasers are studied. An analytic expression of output power for the three-section semiconductor lasers is derived for the first time. From this expression, threshold condition is also obtained.展开更多
With targets of cost reduction per bit and high energy efficiency,5G and beyond call for innovation in the mmWave transmitter architecture and the power amplifier(PA)circuit.To illustrate these points,this paper first...With targets of cost reduction per bit and high energy efficiency,5G and beyond call for innovation in the mmWave transmitter architecture and the power amplifier(PA)circuit.To illustrate these points,this paper firstly explains the benefits and design implications of the hybrid beamforming structure in terms of the mmWave spectrum characteristics,energy efficiency,data rate,communication capacity,coverage and implementation technology choices.Then after reviewing the techniques to improve the power amplifier(PA)output power and efficiency,the design considerations and test results of 60 GHz and 90 GHz mmWave PAs in bulk complementary metal oxide semiconductor(CMOS)process are shown.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61521064,61522408,61574169,6 1334007,61474136,61574166)the Ministry of Science andTechnology of China(Nos.2016YFA0201803,2016YFA0203800,2017YFB0405603)+2 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Nos.QYZDB-SSWJSC048,QYZDY-SSW-JSC001)the Beijing Municipal Science and Technology Project(No.Z171100002017011)the Opening Project of the Key Laboratory of Microelectronic Devices&Integration Technology,Institute of Microelectronics of Chinese Academy of Sciences
文摘As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.
基金This work made use of the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under ARPA-E and Power America Program and the CURENT Industry Partnership Program.
文摘Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC devices are presented.The technologies and challenges for HV SiC device application in converter design are discussed.The state-of-the-art applications of HV SiC devices are also reviewed.
基金supported by the National Natural Science Foundation of China (Nos.50277016,50577028)Specialized Research Fund for the Doctoral Program of Higher Education (No.20050487044)
文摘High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch. In this study, the RSD turn-on conditions were investigated by numerical analysis and device simulation as well as the experiments conducted to validate the turn-on conditions. A design of a triggering high-voltage RSD is presented based on a saturable transformer.
基金Project supported by the National Science and Technology Major Project of China(Grant Nos.2018YFB0504600and 2017YFB0405102)the Frontier Science Key Program of the President of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC006)+7 种基金the Pilot Project of the Chinese Academy of Sciences(Grant No.XDB43030302)the National Natural Science Foundation of China(Grant Nos.62090051,62090052,62090054,11874353,61935009,61934003,61904179,61727822,61805236,62004194,and 61991433)the Science and Technology Development Project of Jilin Province,China(Grant Nos.20200401062GX,202001069GX,20200501006GX,20200501007GX,20200501008GX,and 20190302042GX)the Key Research and Development Project of Guangdong Province,China(Grant No.2020B090922003)the Equipment Pre-researchChina(Grant No.2006ZYGG0304)the Special Scientific Research Project of the Academician Innovation Platform in Hainan Province,China(Grant No.YSPTZX202034)the Dawn Talent Training Program of CIOMP,China。
文摘The semiconductor laser array with single-mode emission is presented in this paper.The 6-μm-wide ridge waveguides(RWGs)are fabricated to select the lateral mode.Thus the fundamental mode of laser array can be obtained by the RWGs.And the maximum output power of single-mode emission can reach 36 W at an injection current of 43 A,after that,a kink will appear.The slow axis(SA)far-field divergence angle of the unit is 13.65.The beam quality factor M;of the units determined by the second-order moment(SOM)method,is 1.2.This single-mode emission laser array can be used for laser processing.
文摘A series connected power semiconductor array, with digital control capability could be used for developing single phase AC regulators or other applications such as AC electronic loads. This technique together with an ordinary gapless transformer could be used to develop a low cost AC voltage regulator (AVR) to provide better or comparable specifications with bulky ferro-resonant AVR types. One primary advantage of the technique is that digital control can be used to minimize harmonics. Commencing with a review of AC voltage regulator techniques for single phase power conditioning systems, an analysis and design aspects of this technique is presented with experimental results for AVRs. Guidelines on how to utilize the technique in a generalized basis is also summarized together with a summary of a technique for achieving harmonic control.
文摘Superjunction(SJ)is one of the most innovative concepts in the field of power semiconductor devices and is often referred to as a"milestone"in power MOS.Its balanced charge field modulation mechanism breaks through the strong dependency between the doping concentration in the drift region and the breakdown voltage V_(B)in conventional devices.This results in a reduction of the trade-off relationship between specific on-resistance R_(on,sp)and V_(B)from the conventional R_(on,sp)∝V_(B)^(2.5)to R_(on,sp)∝W·V_(B)^(1.32),and even to R_(on,sp)∝W·V_(B)^(1.03).As the exponential term coefficient decreases,R_(on,sp)decreases with the cell width W,exhibiting a development pattern reminiscent of"Moore's Law".This paper provides an overview of the latest research developments in SJ power semiconductor devices.Firstly,it introduces the minimum specific on-resistance R_(on,min)theory of SJ devices,along with its combination with special effects like 3-D depletion and tunneling,discussing the development of R_(on,min)theory in the wide bandgap SJ field.Subsequently,it discusses the latest advancements in silicon-based and wide bandgap SJ power devices.Finally,it introduces the homogenization field(HOF)and high-K voltage-sustaining layers derived from the concept of SJ charge balance.SJ has made significant progress in device performance,reliability,and integration,and in the future,it will continue to evolve through deeper integration with different materials,processes,and packaging technologies,enhancing the overall performance of semiconductor power devices.
文摘It is considered the mechanism of streamer discharge in the wide-gap semiconductors as a highly effective method of the laser excitation on the basis of representation about the phenomenon of light self-trapping of the discharge, providing their high propagation velocity down to v- 5 ×10^9 sm/s, the crystallographic orientation, filamentary character at thickness of the channel about 1 μm and absence of destructions of a crystal.
基金The National Natural Science Foundation of China(No. 61106024)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090092120012)the Science and Technology Program of South east University (No. KJ2010402)
文摘A 37. 5 MHz differential complementary metal oxide semiconductor (CMOS) crystal oscillator with low power and low phase noise for the radio frequency tuner of digital radio broadcasting digital radio mondiale (DRAM) and digital audio broadcasting (DAB) systems is realized and characterized. The conventional cross-coupled n-type metal oxide semiconductor (NMOS) transistors are replaced by p-type metal oxide semiconductor (PMOS) transistors to decrease the phase noise in the core part of the crystal oscillator. A symmetry structure of the current mirror is adopted to increase the stability of direct current. The amplitude detecting circuit made up of a single- stage CMOS operational transconductance amplifier (OTA) and a simple amplitude detector is used to improve the current accuracy of the output signals. The chip is fabricated in a 0. 18- pxn CMOS process, and the total chip size is 0. 35 mm x 0. 3 mm. Under a supply voltage of 1.8 V, the measured power consumption is 3.6 mW including the output buffer for 50 testing loads. The proposed crystal oscillator exhibits a low phase noise of - 134. 7 dBc/Hz at 1-kHz offset from the center frequency of 37. 5 MHz.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018GY-005, No. 2017GY-065, No. 2017KJXX-72)
文摘A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.
基金This work was supported by the National Science Foundation of China under grant No.51477177.
文摘Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the improved working efficiency of the large amounts of pulse modulesand accurate requirements for the power coherent combining applications. This paper presents a trigger generator based on a laser diodetriggered GaAs photoconductive semiconductor switch (PCSS) with low jitter and compact size characteristics. It avoids the high currentsthat are harmful to high-gain mode PCSSs. In the trigger circuit, a 200 pF capacitor is charged by a microsecond-scale 18 kV pulse and thendischarged via the high-gain mode GaAs PCSS to trigger the high-power trigatron switch. When triggered by the ~10 ns pulse generated by thePCSS, the DC-charged trigatron can operate in the 20e35 kV range with 10 ns rise time and 1 ns delay-time jitter.
基金Project supported by the National Natural Science Foundation of China(Nos.11672223,11402187,and 51178390)the China Postdoctoral Science Foundation(No.2014M560762)the Fundamental Research Funds for the Central Universities of China(No.xjj2015131)
文摘Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degen- erated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic be- haviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design.
基金supported by the National Natural Science Foundation of China under Grant No.11975305the West Light Foundation of The Chinese Academy of Sciences,Grant No.2017-XBQNXZ-B-008。
文摘Different switching frequencies are required when SiC metal-oxide-semiconductor field-effect transistors(MOSFETs)are switching in a space environment.In this study,the total ionizing dose(TID)responses of SiC power MOSFETs are investigated under different switching frequencies from 1 kHz to 10 MHz.A significant shift was observed in the threshold voltage as the frequency increased,which resulted in premature failure of the drain-source breakdown voltage and drain-source leakage current.The degradation is attributed to the high activation and low recovery rates of traps at high frequencies.The results of this study suggest that a targeted TID irradiation test evaluation method can be developed according to the actual switching frequency of SiC power MOSFETs.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant No.62174154).
文摘The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.
文摘The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,there are a few different points.An SOA in front of the tunable laser should be polarization dependent and has low optical confinement factor.To obtain wide gain bandwidth at the threshold current,the gain chip used in the tunable laser cavity should be something between SOA and fixed-wavelength laser design,while the fixed-wavelength laser has high optical confinement factor.Detailed discussion is given with basic equations and some simulation results on saturation power of the SOA and gain bandwidth of gain chip are shown.
基金financial support from the National Natural Science Foundation of China (61750110517 and 61805166)the Jiangsu Province Natural Science Foundation (BK20170345)+3 种基金supported by the Collaborative Innovation Center of Suzhou Nano Science & Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the 111 Projectthe Joint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘In recent years,solution-processible semiconductors with perovskite or perovskite-inspired structures have been extensively investigated for optoelectronic applications.In particular,silver-bismuth-halides have been identified as especially promising because of their bulk properties and lack of heavily toxic elements.This study investigates the potential of Ag2BiI5 for near-infrared(NIR)-blind visible light photodetection,which is critical to emerging applications(e.g.,wearable optoelectronics and the Internet of Things).Self-powered photodetectors were realized and provided a near-constant≈100 mA W−1 responsivity through the visible,a NIR rejection ratio of>250,a long-wavelength responsivity onset matching standard colorimetric functions,and a linear photoresponse of>5 orders of magnitude.The optoelectronic characterization of Ag2BiI5 photodetectors additionally revealed consistency with one-center models and the role of the carrier collection distance in self-powered mode.This study provides a positive outlook of Ag2BiI5 toward emerging applications on low-cost and low-power NIR-blind visible light photodetector.
文摘The characteristics of low frequency electrical noise, voltage current ( V I ) and electrical derivation for 980 nm InGaAsP/InGaAs/GaAs high power double quantum well lasers(DQWLs) are measured under different conditions. The correlation of the low frequency electrical noise with surface non radiative current of devices is discussed. The results indicate the low frequency electrical noise of 980 nm DQWLs with high power is mainly 1/ f noise and has good relation with the device surface current at low injection.
文摘Using the ray trace method, three-section semiconductor lasers are studied. An analytic expression of output power for the three-section semiconductor lasers is derived for the first time. From this expression, threshold condition is also obtained.
基金supported by the National Natural Science Foundations of China (Nos. 61306030, 61674037)the National Key R&D Program of China (Nos.2016YFC0800400, 2018YFE0205900)the National Science and Technology Major Project (No. 2018ZX03001008)
文摘With targets of cost reduction per bit and high energy efficiency,5G and beyond call for innovation in the mmWave transmitter architecture and the power amplifier(PA)circuit.To illustrate these points,this paper firstly explains the benefits and design implications of the hybrid beamforming structure in terms of the mmWave spectrum characteristics,energy efficiency,data rate,communication capacity,coverage and implementation technology choices.Then after reviewing the techniques to improve the power amplifier(PA)output power and efficiency,the design considerations and test results of 60 GHz and 90 GHz mmWave PAs in bulk complementary metal oxide semiconductor(CMOS)process are shown.