Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-a...Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-autoimmune liver disease and control subjects. These findings were then related to control of ventilation and gas exchange. A secondary objective was to assess respiratory muscle strength and gas exchange and their relation to respiratory mechanics. Methods: Measurements included respiratory elastance and resistance using the passive relaxation method. Pulmonary function, gas exchange and control of ventilation were assessed using standard methods. Results: a) Compared to control subjects, Ers in patients with liver disease was on average 50% greater than in controls;b) mean respiratory resistance, expressed as the respiratory constants, K<sub>1</sub> and K<sub>2</sub> in the Rohrer relationship, Pao/V’ = K<sub>1</sub> + K<sub>2</sub>V’, was not different from control resistance;c) mean maximal inspiratory and maximal expiratory pressures averaged 36% and 55% of their respective control values;d) inspiratory occlusion pressure in 0.1 sec (P<sub>0.1</sub>) was increased and negatively associated with FVC;and e) increases in P<sub>0.1</sub>, mean inspiratory flow (Vt/Ti) and presence of respiratory alkalosis confirmed the increase in ventilatory drive. Despite inspiratory muscle weakness in patients, P<sub>0.1</sub>/Pimax averaged 5-fold higher than in control subjects. Conclusions: Despite inspiratory muscle weakness and a V’<sub>E</sub> similar to that in normal subjects, central drive is increased in patients with chronic liver disease. The increase in ventilatory drive is related to smaller lung volumes and weakly associated with increase in respiratory elastance. Findings confirm that P<sub>0.1</sub> is a reliable measure of central drive and is an approach that can be used in the evaluation of control of ventilation in patients with chronic liver disease.展开更多
A pressure controlled mechanical ventilator with an automatic secretion clearance function can improve secretion clearance safely and efficiently.Studies on secretion clearance by pressure controlled systems show that...A pressure controlled mechanical ventilator with an automatic secretion clearance function can improve secretion clearance safely and efficiently.Studies on secretion clearance by pressure controlled systems show that these are suited for clinical applications.However,these studies are based on a single lung electric model and neglect the coupling between the two lungs.The research methods applied are too complex for the analysis of a multi-parameter system.In order to understand the functioning of the human respiratory system,this paper develops a dimensionless mathematical model of doublelung mechanical ventilation system with a secretion clearance function.An experiment is designed to verify the mathematical model through comparison of dimensionless experimental data and dimensionless simulation data.Finally,the coupling between the two lungs is studied,and an orthogonal experiment designed to identify the impact of each parameter on the system.展开更多
A mathematical model of mechanical ventilator describes its behavior during artificial ventilation. This paper purposes to create and simulate Mathematical Model (MM) of Pressure Controlled Ventilator (PCV) signal. Th...A mathematical model of mechanical ventilator describes its behavior during artificial ventilation. This paper purposes to create and simulate Mathematical Model (MM) of Pressure Controlled Ventilator (PCV) signal. This MM represents the respiratory activities and an important controlled parameter during mechanical ventilation—Positive End Expiration Pressure (PEEP). The MM is expressed and modelled using periodic functions with inequalities to control the beginning of inspiration and expiration durations. The created MM of PCV signal is combined with an existing multi compartmental model of respiratory system that is modified and developed in the internal parameters—compliances (C) to test created MM. The created MM and model of respiratory system are constructed and simulated using Simulink package in MATLAB platform. The obtained simulator of mechnical ventilation system could potentially represent the pressure signal of PVC as a complete respiratory cycle and continuance waveform. This simulator is also able to reflect a respiratory mechanic by changing some input variables such as inspiration pressure (IP), PEEP and C, which are monitored in volume, flow, pressure and PV loop waveforms. The obtained simulator has provided a simple environment for testing and monitoring PCV signal and other parameters (volume, flow and dynamic compliance) during artificial ventilation. Furthermore, the simulator may be used for studying in the laboratory and training ventilator’s operators.展开更多
The present paper describes the theoretical treatment performed for the geometrical optimization of advanced and improved-shape waveforms as airways pressure excitation for controlled breathings in dual-controlled ven...The present paper describes the theoretical treatment performed for the geometrical optimization of advanced and improved-shape waveforms as airways pressure excitation for controlled breathings in dual-controlled ventilation applied to anaesthetized or severe brain injured patients, the respiratory mechanics of which can be assumed linear. Advanced means insensitive to patient breathing activity as well as to ventilator settings while improved-shape intends in comparison to conventional square waveform for a progressive approaching towards physiological transpulmonary pressure and respiratory airflow waveforms. Such functional features along with the best ventilation control for the specific therapeutic requirements of each patient can be achieved through the implementation of both diagnostic and compensation procedures effectively carried out by the Advance Lung Ventilation System (ALVS) already successfully tested for square waveform as airways pressure excitation. Triangular and trapezoidal waveforms have been considered as airways pressure excitation. The results shows that the latter fits completely the requirements for a physiological pattern of endoalveolar pressure and respiratory airflow waveforms, while the former exhibits a lower physiological behaviour but it is anyhow periodically recommended for performing adequately the powerful diagnostic procedure.展开更多
The theoretical approach along with the rationale of harmonic excitation modality (HEM) applied as optimal dual controlled ventilation (DCV) to anaesthetized or severe brain injured patients, whose respiretory mechani...The theoretical approach along with the rationale of harmonic excitation modality (HEM) applied as optimal dual controlled ventilation (DCV) to anaesthetized or severe brain injured patients, whose respiretory mechanics can be properly assumed steady and linear, are presented and discussed. The design criteria of an improved version of the Advanced Lung Ventilation System (ALVS), including HEM in its functional features, are described in details. In particular, the elimination of any undesiderable artificial distortion affecting the respiratory and ventilation pattern waveforms is achieved by maintaining continuous forever the airflow inside the ventilation circuit, ensuring also the highest level of safety for patient in any condition. In such a way, the full-time compatibility of controlled breathings with spontaneous breathing activity of patient during continuous positive airways pressure (CPAP) or bilevel positive airways pressure (BiPAP) ventilation modalities and during assisted/controlled ventilation(A/CV), includeing also synchronized or triggered ventilation modalities, is an intrinsic innovative feature of the system available for clinical application. As expected and according to the clinical requirements, HEM provides for physiological respiratory and ventilation pattern waveforms together with optimal “breath to breath” feedback control of lung volume driven by an improved diagnostic measurement procedure, whose outputs are also vital for adapting all the preset ventilation parameters to the current value of the respiratory parameters of patient. The results produced by software simulations concerning both adult and neonatal patients in different clinical conditions are completely consistent with those obtained by the theoretical treatment, showing that HEM reaches the best performances from both clinical and engineering points of view.展开更多
Objective: The laryngeal mask airway (LMA) is an established way for airway control during spontaneous ventila- tion. Its ability to deliver positive pressure ventilation without leakage especially in low flow stat...Objective: The laryngeal mask airway (LMA) is an established way for airway control during spontaneous ventila- tion. Its ability to deliver positive pressure ventilation without leakage especially in low flow states is still controversy. The aim of this study is to test the possibility of using LMA in pediatric closed circuit controlled ventilation, and to find out the optimum cuff volume to perform closed system ventilation. Methods: Twenty children scheduled for elective surgeries were enrolled in a crossover study. Laryngeal mask airway was used. In stage I, the cuff was inflated with the maximum volume of air as rec- ommended by the manufacturers. Adjustment of volume of air inflated into the LMA cuff to the minimum volume to obtain the effective seal was done at stage II. The leak pressure, intracuff pressure and the leak volume were measured in both stages. Results: The cuff filling volume was significantly lower compared to the maximum cuff inflation volume in stage I. Leakage values showed significantly less values in stage II of the study with smaller cuff inflation volumes. The airway leakage pressure was significantly lower in stage fl in comparison to stage I. Cuff inflation pressure in stage I showed marked elevation which dropped significantly after adjustment of cuff volume in stage I1. Conclusion: Laryngeal mask airway is an effective tool to provide closed circuit controlled ventilation in pediatrics. Inflation of the cuff by the minimum volume of air needed to reach the just sealing pressure is suggested to minimize the leakage volume.展开更多
目的:研究了PCV-VG和VCV模式用于老年患者腹腔镜腹部手术的术中氧合功能及创伤程度。方法:选择60例接受腹腔镜腹部手术的老年患者进行研究,随机分为两组,A组按照VCV序贯PCV-VG模式进行通气,B组按照PCV-VG序贯VCV模式进行通气,气腹开始前...目的:研究了PCV-VG和VCV模式用于老年患者腹腔镜腹部手术的术中氧合功能及创伤程度。方法:选择60例接受腹腔镜腹部手术的老年患者进行研究,随机分为两组,A组按照VCV序贯PCV-VG模式进行通气,B组按照PCV-VG序贯VCV模式进行通气,气腹开始前(T0)、气腹开始后第一种通气模式开始后1h(T_1)、切换通气模式通气后1h(T_2),气腹结束后(T_3)分别测定呼吸功能参数、动脉血气参数以及血清损伤指标。结果:T_1时间点处,A组患者的P_(peak)、P_(mean)、P_(plant)均显著高于B组,PaO_2显著低于B组,SpO_2、PaCO_2与B组无显著性差异;T_2和T_3时间点处,A组的P_(peak)、P_(mean)、Pp la n t均显著低于B组,PaO_2显著低于B组,SpO_2、PaCO_2与B组无显著性差异。T_1时间点处,A组的血清sRAGE、KL-6、TNF-α、MDA含量显著高于B组;T_3时间点处,A组的血清sRAGE、KL-6、TNF-α、MDA含量显著低于B组。结论:PCV-VG模式用于老年患者腹腔镜腹部手术能够降低气道压力、改善肺顺应性以及肺泡氧化、减轻肺损伤以及全身创伤。展开更多
Background: Abdominoplasty is a commonly requested procedure for aesthetic improvement of the affected soft tissue layers of skin, fat, and muscle through the slightest incision feasible. The degree of plicature gener...Background: Abdominoplasty is a commonly requested procedure for aesthetic improvement of the affected soft tissue layers of skin, fat, and muscle through the slightest incision feasible. The degree of plicature generates an increase in intraabdominal pressure that causes an increase in intrathoracic pressure. Pressure, volume, flow, and respiratory rate are components of a unique physical variable, the mechanical power (MP), and is an integrated variable linked to most factors related to postoperative pulmonary complications. Purpose: To assess the effect of rectus plication (RP) during abdominoplasty on lung pressures and the contribution to increasing the MP. Method: A open-label study was conducted at TJ Plast Advanced Center for Plastic Surgery in Tijuana, México, from September 2021 to May 2022. The study included forty-six female patients subjected to abdominoplasty or liposuction with abdominoplasty. After the induction of general anesthesia and neuromuscular blockade, they were allocated into two groups: Group 1 pressure control ventilation-volume guaranteed (PCV-VG) and Group 2 volume control ventilation (VCV). Respiratory pressures and MP were assessed before and after RP. Results: During VCV, patients had a greater increase in peak pressure (PIP) (P 0.000). Plateau pressure (P<sub>plat</sub>) increased 1.78 ± 0.35 cmH<sub>2</sub>O in group 2 after RP (P = 0.001). MP had a greater increase in group 2 after RP (P 0.01). Conclusion: This prospective study showed that RP is related to an increase in PIP and P<sub>plat</sub> and an increase in the MP better controlled with PCV-VG ventilation.展开更多
文摘Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-autoimmune liver disease and control subjects. These findings were then related to control of ventilation and gas exchange. A secondary objective was to assess respiratory muscle strength and gas exchange and their relation to respiratory mechanics. Methods: Measurements included respiratory elastance and resistance using the passive relaxation method. Pulmonary function, gas exchange and control of ventilation were assessed using standard methods. Results: a) Compared to control subjects, Ers in patients with liver disease was on average 50% greater than in controls;b) mean respiratory resistance, expressed as the respiratory constants, K<sub>1</sub> and K<sub>2</sub> in the Rohrer relationship, Pao/V’ = K<sub>1</sub> + K<sub>2</sub>V’, was not different from control resistance;c) mean maximal inspiratory and maximal expiratory pressures averaged 36% and 55% of their respective control values;d) inspiratory occlusion pressure in 0.1 sec (P<sub>0.1</sub>) was increased and negatively associated with FVC;and e) increases in P<sub>0.1</sub>, mean inspiratory flow (Vt/Ti) and presence of respiratory alkalosis confirmed the increase in ventilatory drive. Despite inspiratory muscle weakness in patients, P<sub>0.1</sub>/Pimax averaged 5-fold higher than in control subjects. Conclusions: Despite inspiratory muscle weakness and a V’<sub>E</sub> similar to that in normal subjects, central drive is increased in patients with chronic liver disease. The increase in ventilatory drive is related to smaller lung volumes and weakly associated with increase in respiratory elastance. Findings confirm that P<sub>0.1</sub> is a reliable measure of central drive and is an approach that can be used in the evaluation of control of ventilation in patients with chronic liver disease.
文摘A pressure controlled mechanical ventilator with an automatic secretion clearance function can improve secretion clearance safely and efficiently.Studies on secretion clearance by pressure controlled systems show that these are suited for clinical applications.However,these studies are based on a single lung electric model and neglect the coupling between the two lungs.The research methods applied are too complex for the analysis of a multi-parameter system.In order to understand the functioning of the human respiratory system,this paper develops a dimensionless mathematical model of doublelung mechanical ventilation system with a secretion clearance function.An experiment is designed to verify the mathematical model through comparison of dimensionless experimental data and dimensionless simulation data.Finally,the coupling between the two lungs is studied,and an orthogonal experiment designed to identify the impact of each parameter on the system.
文摘A mathematical model of mechanical ventilator describes its behavior during artificial ventilation. This paper purposes to create and simulate Mathematical Model (MM) of Pressure Controlled Ventilator (PCV) signal. This MM represents the respiratory activities and an important controlled parameter during mechanical ventilation—Positive End Expiration Pressure (PEEP). The MM is expressed and modelled using periodic functions with inequalities to control the beginning of inspiration and expiration durations. The created MM of PCV signal is combined with an existing multi compartmental model of respiratory system that is modified and developed in the internal parameters—compliances (C) to test created MM. The created MM and model of respiratory system are constructed and simulated using Simulink package in MATLAB platform. The obtained simulator of mechnical ventilation system could potentially represent the pressure signal of PVC as a complete respiratory cycle and continuance waveform. This simulator is also able to reflect a respiratory mechanic by changing some input variables such as inspiration pressure (IP), PEEP and C, which are monitored in volume, flow, pressure and PV loop waveforms. The obtained simulator has provided a simple environment for testing and monitoring PCV signal and other parameters (volume, flow and dynamic compliance) during artificial ventilation. Furthermore, the simulator may be used for studying in the laboratory and training ventilator’s operators.
文摘The present paper describes the theoretical treatment performed for the geometrical optimization of advanced and improved-shape waveforms as airways pressure excitation for controlled breathings in dual-controlled ventilation applied to anaesthetized or severe brain injured patients, the respiratory mechanics of which can be assumed linear. Advanced means insensitive to patient breathing activity as well as to ventilator settings while improved-shape intends in comparison to conventional square waveform for a progressive approaching towards physiological transpulmonary pressure and respiratory airflow waveforms. Such functional features along with the best ventilation control for the specific therapeutic requirements of each patient can be achieved through the implementation of both diagnostic and compensation procedures effectively carried out by the Advance Lung Ventilation System (ALVS) already successfully tested for square waveform as airways pressure excitation. Triangular and trapezoidal waveforms have been considered as airways pressure excitation. The results shows that the latter fits completely the requirements for a physiological pattern of endoalveolar pressure and respiratory airflow waveforms, while the former exhibits a lower physiological behaviour but it is anyhow periodically recommended for performing adequately the powerful diagnostic procedure.
文摘The theoretical approach along with the rationale of harmonic excitation modality (HEM) applied as optimal dual controlled ventilation (DCV) to anaesthetized or severe brain injured patients, whose respiretory mechanics can be properly assumed steady and linear, are presented and discussed. The design criteria of an improved version of the Advanced Lung Ventilation System (ALVS), including HEM in its functional features, are described in details. In particular, the elimination of any undesiderable artificial distortion affecting the respiratory and ventilation pattern waveforms is achieved by maintaining continuous forever the airflow inside the ventilation circuit, ensuring also the highest level of safety for patient in any condition. In such a way, the full-time compatibility of controlled breathings with spontaneous breathing activity of patient during continuous positive airways pressure (CPAP) or bilevel positive airways pressure (BiPAP) ventilation modalities and during assisted/controlled ventilation(A/CV), includeing also synchronized or triggered ventilation modalities, is an intrinsic innovative feature of the system available for clinical application. As expected and according to the clinical requirements, HEM provides for physiological respiratory and ventilation pattern waveforms together with optimal “breath to breath” feedback control of lung volume driven by an improved diagnostic measurement procedure, whose outputs are also vital for adapting all the preset ventilation parameters to the current value of the respiratory parameters of patient. The results produced by software simulations concerning both adult and neonatal patients in different clinical conditions are completely consistent with those obtained by the theoretical treatment, showing that HEM reaches the best performances from both clinical and engineering points of view.
文摘Objective: The laryngeal mask airway (LMA) is an established way for airway control during spontaneous ventila- tion. Its ability to deliver positive pressure ventilation without leakage especially in low flow states is still controversy. The aim of this study is to test the possibility of using LMA in pediatric closed circuit controlled ventilation, and to find out the optimum cuff volume to perform closed system ventilation. Methods: Twenty children scheduled for elective surgeries were enrolled in a crossover study. Laryngeal mask airway was used. In stage I, the cuff was inflated with the maximum volume of air as rec- ommended by the manufacturers. Adjustment of volume of air inflated into the LMA cuff to the minimum volume to obtain the effective seal was done at stage II. The leak pressure, intracuff pressure and the leak volume were measured in both stages. Results: The cuff filling volume was significantly lower compared to the maximum cuff inflation volume in stage I. Leakage values showed significantly less values in stage II of the study with smaller cuff inflation volumes. The airway leakage pressure was significantly lower in stage fl in comparison to stage I. Cuff inflation pressure in stage I showed marked elevation which dropped significantly after adjustment of cuff volume in stage I1. Conclusion: Laryngeal mask airway is an effective tool to provide closed circuit controlled ventilation in pediatrics. Inflation of the cuff by the minimum volume of air needed to reach the just sealing pressure is suggested to minimize the leakage volume.
文摘目的:研究了PCV-VG和VCV模式用于老年患者腹腔镜腹部手术的术中氧合功能及创伤程度。方法:选择60例接受腹腔镜腹部手术的老年患者进行研究,随机分为两组,A组按照VCV序贯PCV-VG模式进行通气,B组按照PCV-VG序贯VCV模式进行通气,气腹开始前(T0)、气腹开始后第一种通气模式开始后1h(T_1)、切换通气模式通气后1h(T_2),气腹结束后(T_3)分别测定呼吸功能参数、动脉血气参数以及血清损伤指标。结果:T_1时间点处,A组患者的P_(peak)、P_(mean)、P_(plant)均显著高于B组,PaO_2显著低于B组,SpO_2、PaCO_2与B组无显著性差异;T_2和T_3时间点处,A组的P_(peak)、P_(mean)、Pp la n t均显著低于B组,PaO_2显著低于B组,SpO_2、PaCO_2与B组无显著性差异。T_1时间点处,A组的血清sRAGE、KL-6、TNF-α、MDA含量显著高于B组;T_3时间点处,A组的血清sRAGE、KL-6、TNF-α、MDA含量显著低于B组。结论:PCV-VG模式用于老年患者腹腔镜腹部手术能够降低气道压力、改善肺顺应性以及肺泡氧化、减轻肺损伤以及全身创伤。
文摘Background: Abdominoplasty is a commonly requested procedure for aesthetic improvement of the affected soft tissue layers of skin, fat, and muscle through the slightest incision feasible. The degree of plicature generates an increase in intraabdominal pressure that causes an increase in intrathoracic pressure. Pressure, volume, flow, and respiratory rate are components of a unique physical variable, the mechanical power (MP), and is an integrated variable linked to most factors related to postoperative pulmonary complications. Purpose: To assess the effect of rectus plication (RP) during abdominoplasty on lung pressures and the contribution to increasing the MP. Method: A open-label study was conducted at TJ Plast Advanced Center for Plastic Surgery in Tijuana, México, from September 2021 to May 2022. The study included forty-six female patients subjected to abdominoplasty or liposuction with abdominoplasty. After the induction of general anesthesia and neuromuscular blockade, they were allocated into two groups: Group 1 pressure control ventilation-volume guaranteed (PCV-VG) and Group 2 volume control ventilation (VCV). Respiratory pressures and MP were assessed before and after RP. Results: During VCV, patients had a greater increase in peak pressure (PIP) (P 0.000). Plateau pressure (P<sub>plat</sub>) increased 1.78 ± 0.35 cmH<sub>2</sub>O in group 2 after RP (P = 0.001). MP had a greater increase in group 2 after RP (P 0.01). Conclusion: This prospective study showed that RP is related to an increase in PIP and P<sub>plat</sub> and an increase in the MP better controlled with PCV-VG ventilation.