Supporting soft rock roadways in coal mines has long posed a formidable challenge. Addressing issues such as the formation of soft rock strata, poor fracture development, limited tolerance, and the frequent and severe...Supporting soft rock roadways in coal mines has long posed a formidable challenge. Addressing issues such as the formation of soft rock strata, poor fracture development, limited tolerance, and the frequent and severe damage sustained by conventional bolts due to their low elongation and bearing capacity, this study employs bottom expansion and filling technology. It combines theoretical analysis with booster bolt pull-out tests to scrutinize the radial stress distribution of bolts under extrusion forces. Moreover, it conducts a comparative analysis of bolt bearing characteristics under varying radial pressurization conditions, delving into the impact of radial directional increases in compressive stress on bolt anchoring performance.展开更多
The sediment particles play a huge role in shaping the bed load transport.In this research,240 water-tunnel experiments are carried out to investigate the incipient velocity of the observation particles in two particl...The sediment particles play a huge role in shaping the bed load transport.In this research,240 water-tunnel experiments are carried out to investigate the incipient velocity of the observation particles in two particle arrangements.To accurately predict the incipient velocity of the observation particles,the equation is conceived by the rolling instability mechanism.The incipient velocity equations and experimental data are used to analyze the trend of dispersive pressure and the effect of arrangement position on velocity.We find that it is appropriate to choose the coefficient of drag as 0.261 and the coefficient of lift as 0.198 for the incipient velocity equation of spherical particles on the hemispherical bed surface.Furthermore,the dispersive pressure is closely related to the flow state,particle size,and particle arrangement,which leads to the incipient velocity of the observation particle being at a minimum when the interference particle angle is 45°.Finally,the particle spacing and the projected area changed with the arrangements,directly affecting the incipient velocity of the observed particle.The analysis of four aspects for the coefficients,dispersive pressure,different particle spacing,and projected area will facilitate the prediction of particle incipient velocity,especially on hemispherical beds.展开更多
文摘Supporting soft rock roadways in coal mines has long posed a formidable challenge. Addressing issues such as the formation of soft rock strata, poor fracture development, limited tolerance, and the frequent and severe damage sustained by conventional bolts due to their low elongation and bearing capacity, this study employs bottom expansion and filling technology. It combines theoretical analysis with booster bolt pull-out tests to scrutinize the radial stress distribution of bolts under extrusion forces. Moreover, it conducts a comparative analysis of bolt bearing characteristics under varying radial pressurization conditions, delving into the impact of radial directional increases in compressive stress on bolt anchoring performance.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFB2601100)the National Natural Science Foundation of China(Grant No.51839002,51979014 and 52271257)+1 种基金the Natural Science Foundation of Hunan Province(Grant No.2022JJ10047)the Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX20220909).
文摘The sediment particles play a huge role in shaping the bed load transport.In this research,240 water-tunnel experiments are carried out to investigate the incipient velocity of the observation particles in two particle arrangements.To accurately predict the incipient velocity of the observation particles,the equation is conceived by the rolling instability mechanism.The incipient velocity equations and experimental data are used to analyze the trend of dispersive pressure and the effect of arrangement position on velocity.We find that it is appropriate to choose the coefficient of drag as 0.261 and the coefficient of lift as 0.198 for the incipient velocity equation of spherical particles on the hemispherical bed surface.Furthermore,the dispersive pressure is closely related to the flow state,particle size,and particle arrangement,which leads to the incipient velocity of the observation particle being at a minimum when the interference particle angle is 45°.Finally,the particle spacing and the projected area changed with the arrangements,directly affecting the incipient velocity of the observed particle.The analysis of four aspects for the coefficients,dispersive pressure,different particle spacing,and projected area will facilitate the prediction of particle incipient velocity,especially on hemispherical beds.