The formulation and device collectively constitute an inhalation drug product.Development of inhaled drugs must consider the compatibility between formulation and device in order to achieve the intended pharmaceutical...The formulation and device collectively constitute an inhalation drug product.Development of inhaled drugs must consider the compatibility between formulation and device in order to achieve the intended pharmaceutical performance and usability of the product to improve patient compliance with treatment instruction.From the points of formulation,device and patient use,this article summarizes the inhalation drugs,including pressurized metered dose inhaler(pMDI),dry powder inhaler(DPI),and nebulizer that are currently available in the US and UK markets.It also discusses the practical considerations for the development of inhalers and provides an update on the corresponding regulations of the FDA(U.S.Food and Drug Administration)and the EMA(European Medicines Agency).展开更多
Three techniques of root pressure probe, pressure chamber and high pressure flow meter were used to measure the hydraulic conductivities (Lpr) of whole root systems of young maize (Zea mays L.) seedlings grown hyd...Three techniques of root pressure probe, pressure chamber and high pressure flow meter were used to measure the hydraulic conductivities (Lpr) of whole root systems of young maize (Zea mays L.) seedlings grown hydroponically under either drought or normal water conditions. Compared to normal water conditions, drought stress simulated by polyethylene glycol 6 000 (osmotic potential =-0.2 MPa) reduced Lpr in the root system by over 50%. It indicated that water permeability in the roots decreased significantly when plants suffered from water shortages. Moreover, there was no significant difference (P〈 0.05) on the Lpr values in the root systems developed under a given water stress regime among the three techniques used. Therefore, all three methods are acceptable to study the hydraulic conductivity of maize seedling root systems. We have also highlighted some of the technical limitations of each method. It can be inferred that the root pressure probe is preferable for young maize seedlings because it is subtle and has the additional ability to determine solute transport properties, but the method is time consuming. Other advantages and disadvantages of each technique are discussed in order to acquaint researchers with basic information that could contribute to their choice of an appropriate technique for future studies.展开更多
文摘The formulation and device collectively constitute an inhalation drug product.Development of inhaled drugs must consider the compatibility between formulation and device in order to achieve the intended pharmaceutical performance and usability of the product to improve patient compliance with treatment instruction.From the points of formulation,device and patient use,this article summarizes the inhalation drugs,including pressurized metered dose inhaler(pMDI),dry powder inhaler(DPI),and nebulizer that are currently available in the US and UK markets.It also discusses the practical considerations for the development of inhalers and provides an update on the corresponding regulations of the FDA(U.S.Food and Drug Administration)and the EMA(European Medicines Agency).
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China(20093702120002)the Shandong Province Postdoctoral Special Fund Innovative Projects,China(200903024)
文摘Three techniques of root pressure probe, pressure chamber and high pressure flow meter were used to measure the hydraulic conductivities (Lpr) of whole root systems of young maize (Zea mays L.) seedlings grown hydroponically under either drought or normal water conditions. Compared to normal water conditions, drought stress simulated by polyethylene glycol 6 000 (osmotic potential =-0.2 MPa) reduced Lpr in the root system by over 50%. It indicated that water permeability in the roots decreased significantly when plants suffered from water shortages. Moreover, there was no significant difference (P〈 0.05) on the Lpr values in the root systems developed under a given water stress regime among the three techniques used. Therefore, all three methods are acceptable to study the hydraulic conductivity of maize seedling root systems. We have also highlighted some of the technical limitations of each method. It can be inferred that the root pressure probe is preferable for young maize seedlings because it is subtle and has the additional ability to determine solute transport properties, but the method is time consuming. Other advantages and disadvantages of each technique are discussed in order to acquaint researchers with basic information that could contribute to their choice of an appropriate technique for future studies.