We consider a new subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations by using lowest equal-order pair of finite elements. The scheme ...We consider a new subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations by using lowest equal-order pair of finite elements. The scheme stabilizes convection dominated problems and ameliorates the restrictive inf-sup compatibility stability. It has some attractive fea- tures including parameter free for the pressure stabilized term and calculations required for higher order derivatives. Moreover, it requires only the solutions of the linear system arising from an Oseen problem per time step and has second order temporal accuracy. The method achieves optimal accuracy with respect to solution regularity.展开更多
For the low-order finite element pair P1P1,based on full domain partition technique,a parallel pressure projection stabilized finite element algorithm for the Stokes equation with nonlinear slip boundary con...For the low-order finite element pair P1P1,based on full domain partition technique,a parallel pressure projection stabilized finite element algorithm for the Stokes equation with nonlinear slip boundary conditions is designed and analyzed.From the definition of the subdifferential,the variational formulation of this equation is the variational inequality problem of the second kind.Each subproblem is a global problem on the composite grid,which is easy to program and implement.The optimal error estimates of the approximate solutions are obtained by theoretical analysis since the appropriate stabilization parameter is chosen.Finally,some numerical results are given to demonstrate the hight efficiency of the parallel stabilized finite element algorithm.展开更多
A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable...A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition. An error estimate is Obtained.展开更多
A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements f...A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved.展开更多
A new full discrete stabilized viscosity method for the transient Navier-Stokes equations with the high Reynolds number (small viscosity coefficient) is proposed based on the pressure projection and the extrapolated...A new full discrete stabilized viscosity method for the transient Navier-Stokes equations with the high Reynolds number (small viscosity coefficient) is proposed based on the pressure projection and the extrapolated trapezoidal rule. The transient Navier-Stokes equations are fully discretized by the continuous equal-order finite elements in space and the reduced Crank-Nicolson scheme in time. The new stabilized method is stable and has many attractive properties. First, the system is stable for the equal-order combination of discrete continuous velocity and pressure spaces because of adding a pres- sure projection term. Second, the artifical viscosity parameter is added to the viscosity coefficient as a stability factor, so the system is antidiffusive. Finally, the method requires only the solution to a linear system at every time step. Stability and convergence of the method is proved. The error estimation results show that the method has a second-order accuracy, and the constant in the estimation is independent of the viscosity coefficient. The numerical results are given, which demonstrate the advantages of the method presented.展开更多
For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral fin...For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral finite element spaces. The semi- and full-discrete schemes of the stabilized method are studied based on the pressure projection and a variational multi-scale method. It has some attractive features: avoiding higher-order derivatives and edge-based data structures, adding a discrete velocity term only on the fine scale, being effective for high Reynolds number fluid flows, and avoiding increased computation cost. For the full-discrete scheme, it has second-order estimations of time and is unconditionally stable. The presented numerical results agree well with the theoretical results.展开更多
Let {Si}li=1 be an iterated function system (IFS) on Rd with attractor K. Let π be the canonical projection. In this paper, we define a new concept called "projection pressure" Pπ(φ) for φ ∈(Rd) under cer...Let {Si}li=1 be an iterated function system (IFS) on Rd with attractor K. Let π be the canonical projection. In this paper, we define a new concept called "projection pressure" Pπ(φ) for φ ∈(Rd) under certain arlene IFS, and show the variational principle about the projection pressure. Furthermore, we check that the unique zero root of "projection pressure" still satisfies Bowen's equation when each Si is the similar map with the same compression ratio. Using the root of Bowen's equation, we can get the Hausdorff dimension of the attractor K.展开更多
Let {Si}li=l be an iterated function system (IFS) on Rd with an attractor K. Let (S,cr) denote the one-sided full shift over the finite alphabet {1,2,...,l}, and let π:∑ -K be the coding map. Given an asymptot...Let {Si}li=l be an iterated function system (IFS) on Rd with an attractor K. Let (S,cr) denote the one-sided full shift over the finite alphabet {1,2,...,l}, and let π:∑ -K be the coding map. Given an asymptotically (sub)-additive sequence of continuous functions{Si}n≥1, we define the asymptotically additive projection pressure Pπ and show the variational principle for Pπunder certain affine IFS. We also obtain variational principle for the asymptotically sub-additive projection pressure if the IFS satisfies asymptotically weak separation condition (AWSC). Furthermore, when the IFS satisfies AWSC, we investigate the zero temperature limits of the asymptotically sub-additive projection pressure Pπ(β) with positive parameter β.展开更多
In this paper,a new type of stabilized finite element method is discussed for Oseen equations based on the local L^(2)projection stabilized technique for the velocity field.Velocity and pressure are approximated by tw...In this paper,a new type of stabilized finite element method is discussed for Oseen equations based on the local L^(2)projection stabilized technique for the velocity field.Velocity and pressure are approximated by two kinds of mixed finite element spaces,P^(2)_( l)-P_(1),(l=1,2).A main advantage of the proposed method lies in that,all the computations are performed at the same element level,without the need of nested meshes or the projection of the gradient of velocity onto a coarse level.Stability and convergence are proved for two kinds of stabilized schemes.Numerical experiments confirm the theoretical results.展开更多
In this paper,we present a new stabilized finite element method for transient Navier-Stokes equations with high Reynolds number based on the projection of the velocity and pressure.We use Taylor-Hood elements and the ...In this paper,we present a new stabilized finite element method for transient Navier-Stokes equations with high Reynolds number based on the projection of the velocity and pressure.We use Taylor-Hood elements and the equal order elements in space and second order difference in time to get the fully discrete scheme.The scheme is proven to possess the absolute stability and the optimal error estimates.Numerical experiments show that our method is effective for transient Navier-Stokes equations with high Reynolds number and the results are in good agreement with the value of subgrid-scale eddy viscosity methods,Pet ro-Galerkin finite element method and st reamline diffusion method.展开更多
基金Acknowledgments. The work is supported by the Natural Science Foundation of China (No. 10671154 and No. 11071184) and the National Basic Research Program (No. 2005CB321703). It is also supported by Sichuan Science and Technology Project (No. 05GG006-006-2) and Science Research Foundation of UESTC.
文摘We consider a new subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations by using lowest equal-order pair of finite elements. The scheme stabilizes convection dominated problems and ameliorates the restrictive inf-sup compatibility stability. It has some attractive fea- tures including parameter free for the pressure stabilized term and calculations required for higher order derivatives. Moreover, it requires only the solutions of the linear system arising from an Oseen problem per time step and has second order temporal accuracy. The method achieves optimal accuracy with respect to solution regularity.
基金supported by the Natural Science Foundation of China(No.11361016)the Basic and Frontier Explore Program of Chongqing Municipality,China(No.cstc2018jcyjAX0305)Funds for the Central Universities(No.XDJK2018B032).
文摘For the low-order finite element pair P1P1,based on full domain partition technique,a parallel pressure projection stabilized finite element algorithm for the Stokes equation with nonlinear slip boundary conditions is designed and analyzed.From the definition of the subdifferential,the variational formulation of this equation is the variational inequality problem of the second kind.Each subproblem is a global problem on the composite grid,which is easy to program and implement.The optimal error estimates of the approximate solutions are obtained by theoretical analysis since the appropriate stabilization parameter is chosen.Finally,some numerical results are given to demonstrate the hight efficiency of the parallel stabilized finite element algorithm.
基金Project supported by the Science and Technology Foundation of Sichuan Province (No.05GG006- 006-2)the Research Fund for the Introducing Intelligence of University of Electronic Science and Technology of China
文摘A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition. An error estimate is Obtained.
基金supported by the National Natural Science Foundation of China(Nos.11271273 and 11271298)
文摘A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved.
基金supported by the Sichuan Science and Technology Project (No.05GG006-006-2)the Research Fund for Introducing Intelligence of Electronic Science and Technology of China
文摘A new full discrete stabilized viscosity method for the transient Navier-Stokes equations with the high Reynolds number (small viscosity coefficient) is proposed based on the pressure projection and the extrapolated trapezoidal rule. The transient Navier-Stokes equations are fully discretized by the continuous equal-order finite elements in space and the reduced Crank-Nicolson scheme in time. The new stabilized method is stable and has many attractive properties. First, the system is stable for the equal-order combination of discrete continuous velocity and pressure spaces because of adding a pres- sure projection term. Second, the artifical viscosity parameter is added to the viscosity coefficient as a stability factor, so the system is antidiffusive. Finally, the method requires only the solution to a linear system at every time step. Stability and convergence of the method is proved. The error estimation results show that the method has a second-order accuracy, and the constant in the estimation is independent of the viscosity coefficient. The numerical results are given, which demonstrate the advantages of the method presented.
基金supported by the National Natural Science Foundation of China(No.11271273)
文摘For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral finite element spaces. The semi- and full-discrete schemes of the stabilized method are studied based on the pressure projection and a variational multi-scale method. It has some attractive features: avoiding higher-order derivatives and edge-based data structures, adding a discrete velocity term only on the fine scale, being effective for high Reynolds number fluid flows, and avoiding increased computation cost. For the full-discrete scheme, it has second-order estimations of time and is unconditionally stable. The presented numerical results agree well with the theoretical results.
基金supported by National Natural Science Foundation of China (Grant No.10971100)National Basic Research Program of China (973 Program) (Grant No. 2007CB814800)
文摘Let {Si}li=1 be an iterated function system (IFS) on Rd with attractor K. Let π be the canonical projection. In this paper, we define a new concept called "projection pressure" Pπ(φ) for φ ∈(Rd) under certain arlene IFS, and show the variational principle about the projection pressure. Furthermore, we check that the unique zero root of "projection pressure" still satisfies Bowen's equation when each Si is the similar map with the same compression ratio. Using the root of Bowen's equation, we can get the Hausdorff dimension of the attractor K.
文摘Let {Si}li=l be an iterated function system (IFS) on Rd with an attractor K. Let (S,cr) denote the one-sided full shift over the finite alphabet {1,2,...,l}, and let π:∑ -K be the coding map. Given an asymptotically (sub)-additive sequence of continuous functions{Si}n≥1, we define the asymptotically additive projection pressure Pπ and show the variational principle for Pπunder certain affine IFS. We also obtain variational principle for the asymptotically sub-additive projection pressure if the IFS satisfies asymptotically weak separation condition (AWSC). Furthermore, when the IFS satisfies AWSC, we investigate the zero temperature limits of the asymptotically sub-additive projection pressure Pπ(β) with positive parameter β.
基金This work is supported by NSF of China(Nos.11071184,11271273,11371275,41674141)NSF of Shanxi Province(No.2012011015-6)+3 种基金STIP of Higher Education Institutions in Shanxi(No.20111121)Young Scholars Development Fund of SWPU(No.201599010041)Young Science and Technology Innovation Team of SWPU(No.2015CXTD07)Key Program of SiChuan Provincial Department of Education(No.16ZA0066).
文摘In this paper,a new type of stabilized finite element method is discussed for Oseen equations based on the local L^(2)projection stabilized technique for the velocity field.Velocity and pressure are approximated by two kinds of mixed finite element spaces,P^(2)_( l)-P_(1),(l=1,2).A main advantage of the proposed method lies in that,all the computations are performed at the same element level,without the need of nested meshes or the projection of the gradient of velocity onto a coarse level.Stability and convergence are proved for two kinds of stabilized schemes.Numerical experiments confirm the theoretical results.
基金We thank Dr.Chen Gang for the great help to the numerical part of this paper.This research was supported by the Natural Science Foundation of China(No.11271273)Major Project of Education Department in Sichan(No.18ZA0276).
文摘In this paper,we present a new stabilized finite element method for transient Navier-Stokes equations with high Reynolds number based on the projection of the velocity and pressure.We use Taylor-Hood elements and the equal order elements in space and second order difference in time to get the fully discrete scheme.The scheme is proven to possess the absolute stability and the optimal error estimates.Numerical experiments show that our method is effective for transient Navier-Stokes equations with high Reynolds number and the results are in good agreement with the value of subgrid-scale eddy viscosity methods,Pet ro-Galerkin finite element method and st reamline diffusion method.