The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above...The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above IP65,which can trap flammable and explosive gases from battery thermal runaway and cause explosions.This poses serious safety risks and challenges for LCBESS.In this study,we tested overcharged battery inside a commercial LCBP and found that the conventionally mechanical pressure relief valve(PRV) on the LCBP had a delayed response and low-pressure relief efficiency.A realistic 20-foot model of an energy storage cabin was constructed using the Flacs finite element simulation software.Comparative studies were conducted to evaluate the pressure relief efficiency and the influence on neighboring battery packs in case of internal explosions,considering different sizes and installation positions of the PRV.Here,a newly developed electric-controlled PRV integrated with battery fault detection is introduced,capable of starting within 50 ms of the battery safety valve opening.Furthermore,the PRV was integrated with the battery management system and changed the battery charging and discharging strategy after the PRV was opened.Experimental tests confirmed the efficacy of this method in preventing explosions.This paper addresses the safety concerns associated with LCBPs and proposes an effective solution for explosion relief.展开更多
Current research on pilot-operated relief valve stability is primarily conducted from the perspective of system dynamics or stability criteria,and most of the existing conclusions focus on the spool shape,damping hole...Current research on pilot-operated relief valve stability is primarily conducted from the perspective of system dynamics or stability criteria,and most of the existing conclusions focus on the spool shape,damping hole size,and pulsation frequency of the pump.However,the essential factors pertaining to the unstable vibration of relief valves remain ambiguous.In this study,the dynamic behavior of a pilot-operated relief valve is investigated using the frequency-domain method.The result suggests that the dynamic pressure feedback orifice is vital to the dynamic characteristics of the valve.A large orifice has a low flow resistance.In this case,the fluid in the main spring chamber flows freely,which is not conducive to the stability of the relief valve.However,a small orifice may create significant flow resistance,thus restricting fluid flow.In this case,the oil inside the main valve spring chamber is equivalent to a high-stiffness liquid spring.The main mass-spring vibration system has a natural frequency that differs significantly from the operating frequency of the relief valve,which is conducive to the stability of the relief valve.Good agreement is obtained between the theoretical analysis and experiments.The results indicate that designing a dynamic pressure feedback orifice of an appropriate size is beneficial to improving the stability of hydraulic pilot-operated relief valves.In addition,the dynamic pressure feedback orifice reduces the response speed of the relief valve.This study comprehensively considers the stability,rapidity,and immunity of relief valves and expands current investigations into the dynamic characteristics of relief valves from the perspective of classical control theory,thus revealing the importance of different parameters.展开更多
Based on the analysis of the-state-of-the-art of pressure compensation of underwater hydraulic systems (UHSs), a new method of pressure compensation of UHSs, whose hydraulic power unit is in the atmospheric circumst...Based on the analysis of the-state-of-the-art of pressure compensation of underwater hydraulic systems (UHSs), a new method of pressure compensation of UHSs, whose hydraulic power unit is in the atmospheric circumstance, is proposed. And a pilot-operated relief valve with pressure compensation is realized. The pressure compensation precision is guaranteed by direct detection. Its dynamic performance and stability are improved by a dynamic feedback. Theoretical study, simulation and experiment show that the pilot-operated relief valve with pressure compensation has a fine property of tracking underwater ambient pressure and meet the requirement of underwater ambient pressure compensation.展开更多
基金sponsored by the Science and Technology Program of State Grid Corporation of China(4000-202355090A-1-1ZN)。
文摘The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above IP65,which can trap flammable and explosive gases from battery thermal runaway and cause explosions.This poses serious safety risks and challenges for LCBESS.In this study,we tested overcharged battery inside a commercial LCBP and found that the conventionally mechanical pressure relief valve(PRV) on the LCBP had a delayed response and low-pressure relief efficiency.A realistic 20-foot model of an energy storage cabin was constructed using the Flacs finite element simulation software.Comparative studies were conducted to evaluate the pressure relief efficiency and the influence on neighboring battery packs in case of internal explosions,considering different sizes and installation positions of the PRV.Here,a newly developed electric-controlled PRV integrated with battery fault detection is introduced,capable of starting within 50 ms of the battery safety valve opening.Furthermore,the PRV was integrated with the battery management system and changed the battery charging and discharging strategy after the PRV was opened.Experimental tests confirmed the efficacy of this method in preventing explosions.This paper addresses the safety concerns associated with LCBPs and proposes an effective solution for explosion relief.
基金Supported by National Natural Science Foundation of China(Grant No.52175059)National Key Research and Development Program of China(Grant No.2018YFB2001100).
文摘Current research on pilot-operated relief valve stability is primarily conducted from the perspective of system dynamics or stability criteria,and most of the existing conclusions focus on the spool shape,damping hole size,and pulsation frequency of the pump.However,the essential factors pertaining to the unstable vibration of relief valves remain ambiguous.In this study,the dynamic behavior of a pilot-operated relief valve is investigated using the frequency-domain method.The result suggests that the dynamic pressure feedback orifice is vital to the dynamic characteristics of the valve.A large orifice has a low flow resistance.In this case,the fluid in the main spring chamber flows freely,which is not conducive to the stability of the relief valve.However,a small orifice may create significant flow resistance,thus restricting fluid flow.In this case,the oil inside the main valve spring chamber is equivalent to a high-stiffness liquid spring.The main mass-spring vibration system has a natural frequency that differs significantly from the operating frequency of the relief valve,which is conducive to the stability of the relief valve.Good agreement is obtained between the theoretical analysis and experiments.The results indicate that designing a dynamic pressure feedback orifice of an appropriate size is beneficial to improving the stability of hydraulic pilot-operated relief valves.In addition,the dynamic pressure feedback orifice reduces the response speed of the relief valve.This study comprehensively considers the stability,rapidity,and immunity of relief valves and expands current investigations into the dynamic characteristics of relief valves from the perspective of classical control theory,thus revealing the importance of different parameters.
基金This project is supported by National Natural Science Foundation of China(No.50475105).
文摘Based on the analysis of the-state-of-the-art of pressure compensation of underwater hydraulic systems (UHSs), a new method of pressure compensation of UHSs, whose hydraulic power unit is in the atmospheric circumstance, is proposed. And a pilot-operated relief valve with pressure compensation is realized. The pressure compensation precision is guaranteed by direct detection. Its dynamic performance and stability are improved by a dynamic feedback. Theoretical study, simulation and experiment show that the pilot-operated relief valve with pressure compensation has a fine property of tracking underwater ambient pressure and meet the requirement of underwater ambient pressure compensation.