Finite element analysis was carried out to investigate the conical indentation response of elastic-plastic solids within the framework of the hydrostatic pressure dependence and the power law strain hardening. A large...Finite element analysis was carried out to investigate the conical indentation response of elastic-plastic solids within the framework of the hydrostatic pressure dependence and the power law strain hardening. A large number of 40 difierent combinations of elasto-plastic properties with n ranging from 0 to 0.5 and σy/E ranging from 0.0014 to 0.03 were used in the computations. The loading curvature C and the average contact pressure Pave were considered within the concept of representative strains and the dimensional analysis.Dimensionless functions associated with these two parameters were formulated for each studied value of the pressure sensitivity. The results for pressure sensitive materials lie between those for Von Mises materials and the elastic model.展开更多
Spherical cavity expansion model is often used to study the mechanic characteristics of pressure sensitive mediums. The most important one we do in the paper is that we construct a four-region model with σθ≠0 in da...Spherical cavity expansion model is often used to study the mechanic characteristics of pressure sensitive mediums. The most important one we do in the paper is that we construct a four-region model with σθ≠0 in damage region,which is different from what Satapathy did before and is more reasonable. By adopting this model,different constitutive equations were constructed by different method-elastic mechanics in elastic region,damage mechanics and fracture mechanics in damage region,and macro-micro mechanics theory in plastic region. Then using Durban's self-similarity assumption,the control differential equations with boundary conditions were established,and the static numerical solution of stress field and displacement field in the three different regions of elastic,damage and plastic area were discussed respectively. Results showed that this four-region model can describe precisely the mechanic characteristics of pressure sensitive mediums under initial pressure.展开更多
Sense of touch is one of the important information from environment for human to live in daily life. Haptic interface is a hot topic in virtual reality but almost all of the devices focus on fingers and hands as targe...Sense of touch is one of the important information from environment for human to live in daily life. Haptic interface is a hot topic in virtual reality but almost all of the devices focus on fingers and hands as targets. In this paper, we focus on the foot haptic device with magnetic flied sensitive elastomer (MSE). We developed a haptic unit used as a magnetic field generator for MSE and contact point of foot haptic device. MSE samples mixed with 80 wt% carbonyl iron particles were prepared and evaluated with the developed magnet. Experimental results show that the mechanical property of the haptic unit can be modeled with the adjustable friction element. This property has a good advantage for the haptic unit.展开更多
文摘Finite element analysis was carried out to investigate the conical indentation response of elastic-plastic solids within the framework of the hydrostatic pressure dependence and the power law strain hardening. A large number of 40 difierent combinations of elasto-plastic properties with n ranging from 0 to 0.5 and σy/E ranging from 0.0014 to 0.03 were used in the computations. The loading curvature C and the average contact pressure Pave were considered within the concept of representative strains and the dimensional analysis.Dimensionless functions associated with these two parameters were formulated for each studied value of the pressure sensitivity. The results for pressure sensitive materials lie between those for Von Mises materials and the elastic model.
基金Sponsored by the Foundation of Harbin Engineering University (Grant No. HEUF04005)
文摘Spherical cavity expansion model is often used to study the mechanic characteristics of pressure sensitive mediums. The most important one we do in the paper is that we construct a four-region model with σθ≠0 in damage region,which is different from what Satapathy did before and is more reasonable. By adopting this model,different constitutive equations were constructed by different method-elastic mechanics in elastic region,damage mechanics and fracture mechanics in damage region,and macro-micro mechanics theory in plastic region. Then using Durban's self-similarity assumption,the control differential equations with boundary conditions were established,and the static numerical solution of stress field and displacement field in the three different regions of elastic,damage and plastic area were discussed respectively. Results showed that this four-region model can describe precisely the mechanic characteristics of pressure sensitive mediums under initial pressure.
文摘Sense of touch is one of the important information from environment for human to live in daily life. Haptic interface is a hot topic in virtual reality but almost all of the devices focus on fingers and hands as targets. In this paper, we focus on the foot haptic device with magnetic flied sensitive elastomer (MSE). We developed a haptic unit used as a magnetic field generator for MSE and contact point of foot haptic device. MSE samples mixed with 80 wt% carbonyl iron particles were prepared and evaluated with the developed magnet. Experimental results show that the mechanical property of the haptic unit can be modeled with the adjustable friction element. This property has a good advantage for the haptic unit.