期刊文献+
共找到3,278篇文章
< 1 2 164 >
每页显示 20 50 100
Numerical analysis of the effects of downhole dynamic conditions on formation testing while drilling 被引量:2
1
作者 DI Dejia TAO Guo +2 位作者 WANG Bing CHEN Xu SUN Jiming 《Petroleum Science》 SCIE CAS CSCD 2014年第3期391-400,共10页
Formation testing while drilling is an innovative technique that is replacing conventional pressure testing in which the fluid sampling is conducted in a relatively short time following the drilling. At this time, mud... Formation testing while drilling is an innovative technique that is replacing conventional pressure testing in which the fluid sampling is conducted in a relatively short time following the drilling. At this time, mud invasion has just started, mudcake has not formed entirely and the formation pressure is not stable. Therefore, it is important to study the influence of the downhole dynamic environment on pressure testing and fluid sampling. This paper applies an oil-water two phase finite element model to study the influence of mudcake quality and mud filtrate invasion on supercharge pressure, pretest and sampling in the reservoirs of different permeability. However, the study is only for the cases with water based mud in the wellbore. The results illustrate that the mudcake quality has a significant influence on the supercharge pressure and fluid sampling, while the level of mud filtrate invasion has a strong impact on pressure testing and sampling. In addition, in-situ formation pressure testing is more difficult in low permeability reservoirs as the mud filtrate invasion is deeper and therefore degrades the quality of fluid sampling. Finally, a field example from an oil field on the Alaskan North Slope is presented to validate the numerical studies of the effects of downhole dynamic conditions on formation testing while drilling. 展开更多
关键词 Formation testing while drilling formation supercharge pressure testing fluid sampling finite element method mudcake filtrate invasion
下载PDF
Optimal depth of in-situ pressure-preserved coring in coal seams considering roadway excavation and drilling disturbance
2
作者 Peng-Fei Cui De-Lei Shang +5 位作者 Peng Chu Ju Li Da-Li Sun Tian-Yu Wang Ming-Zhong Gao He-Ping Xie 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3517-3534,共18页
Using pressure-preserved coring technique to determine in-situ gas content provides a more precise assessment of gas resource reserves and safeguard of mining safety in coal seams. How coring technique and depth affec... Using pressure-preserved coring technique to determine in-situ gas content provides a more precise assessment of gas resource reserves and safeguard of mining safety in coal seams. How coring technique and depth affect the determination of gas content is unclear due to borehole zoning rupture caused by roadway excavation and drilling disturbance. To this end, a proposed coupling model of stress distribution and gas migration was simulated and validated by FLAC^(3D) and COMSOL Multiphysics considering superposition effects of roadway excavation and drilling disturbance. The findings indicate that the roadway surrounding rock displays distinct zoning features including stress relief zone, stress concentration zone that is composed of plastic zone, elastic zone, and original stress zone;and the broken situations depending on the borehole peeping are consistent with the corresponding simulation results.On this basis, this study proposes a set of drilling coring depth calculation and prediction model for the gas desorption affected area under engineering disturbance. Optimal depth of coring drilling is not only approach to the in-situ coal bulk, but also can get the balance of the drilling workload and cost controlling. According to the typical mine site geological conditions and the numerical simulation results in this study, if the roadway excavation time is ~1 year, it is recommended that the pressure-preserved coring depth should be greater than 17 m. 展开更多
关键词 In-situ fidelity coring In-situ pressure preserved coring Gas content drilling disturbance Coring depth Excavation damage zone
下载PDF
An optimization method of fidelity parameters of formation fluid sampling cylinder while drilling
3
作者 JIANG Chuanlong YAN Tingjun +3 位作者 ZHANG Yang SUN Tengfei CHEN Zhongshuai SUN Haoyu 《Petroleum Exploration and Development》 CSCD 2022年第2期458-467,共10页
A design idea of fidelity sampling cylinder while drilling based on surface nitrogen precharging and supplemented by downhole pressurization was proposed, and the working mode and optimization method of sampling param... A design idea of fidelity sampling cylinder while drilling based on surface nitrogen precharging and supplemented by downhole pressurization was proposed, and the working mode and optimization method of sampling parameters were discussed. The nitrogen chamber in the sampling cylinder functions as an energy storage air cushion, which can supplement the pressure loss caused by temperature change in the sampling process to some extent. The downhole pressurization is to press the sample into the sample chamber as soon as possible, and further increase the pressure of sample to make up for the pressure that the nitrogen chamber cannot provide. Through the analysis of working mode of the sampling fidelity cylinder, the non-ideal gas state equation was used to deduce and calculate the optimal values of fidelity parameters such as pre-charged nitrogen pressure, downhole pressurization amount and sampling volume according to whether the bubble point pressure of the sampling fluid was known and on-site emergency sampling situation. Besides, the influences of ground temperature on fidelity parameters were analyzed, and corresponding correction methods were put forward. The research shows that the fidelity sampling cylinder while drilling can effectively improve the fidelity of the sample. When the formation fluid sample reaches the surface, it can basically ensure that the sample does not change in physical phase state and keeps the same chemical components in the underground formation. 展开更多
关键词 sampling while drilling formation fluid sample fidelity bubble point pressure nitrogen pre-charge downhole pressurization parameter optimization
下载PDF
Formation permeability evaluation and productivity prediction based on mobility from pressure measurement while drilling
4
作者 SHI Xinlei CUI Yunjiang +2 位作者 XU Wankun ZHANG Jiansheng GUAN Yeqin 《Petroleum Exploration and Development》 2020年第1期146-153,共8页
Based on the measurement mechanism of mobility in pressure measurement while drilling, through analyzing a large number of mobility data, it is found that under the condition of water-based mud drilling, the product o... Based on the measurement mechanism of mobility in pressure measurement while drilling, through analyzing a large number of mobility data, it is found that under the condition of water-based mud drilling, the product of mobility from pressure measurement while drilling and the viscosity of mud filtrate is infinitely close to the water phase permeability under the residual oil in relative permeability experiment. Based on this, a method converting the mobility from pressure measurement while drilling to core permeability is proposed, and the permeability based on Timur formula has been established. Application of this method in Penglai 19-9 oilfield of Bohai Sea shows:(1) Compared with the permeability calculated by the model of adjacent oilfields, the permeability calculated by this model is more consistent with the permeability calculated by core analysis.(2) Based on the new model, the correlation between the calculated mobility of well logging and the actual drilling specific productivity index bas been established. Compared with the relationship established by using the permeability model of an adjacent oilfield, the correlation of the new model is better.(3) Productivity of four directional wells was predicted, and the prediction results are in good agreement with the actual production after drilling. 展开更多
关键词 MOBILITY from pressure measurement while drilling permeability IRREDUCIBLE water SATURATION Timur formula productivity prediction Penglai 19-9 OILFIELD
下载PDF
Development of a High Temperature and High Pressure Oil-Based Drilling Fluid Emulsion Stability Tester
5
作者 Huaiyuan Long Wu Chen +3 位作者 Dichen Tan Lanping Yang Shunyuan Zhang Song Wang 《Open Journal of Yangtze Oil and Gas》 2021年第2期25-35,共11页
When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage... When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage method nor the centrifugal method currently used to evaluate the stability of oil-based drilling fluids can reflect the emulsification stability of drilling fluids under high temperature and high pressure on site. Therefore, a high-temperature and high-pressure oil-based drilling fluid emulsion stability evaluation instrument is studied, which is mainly composed of a high-temperature autoclave body, a test electrode, a temperature control system, a pressure control system, and a test system. The stability test results of the instrument show that the instrument can achieve stable testing and the test data has high reliability. This instrument is used to analyze the factors affecting the emulsion stability of oil-based drilling fluids. The experimental results show that under the same conditions, the higher the stirring speed, the better the emulsion stability of the drilling fluid;the longer the stirring time, the better the emulsion stability of the drilling fluid;the greater the oil-water ratio, the better the emulsion stability of the drilling fluid. And the test results of the emulsification stability of oil-based drilling fluids at high temperature and high pressure show that under the same pressure, as the temperature rises, the emulsion stability of oil-based drilling fluids is significantly reduced;at the same temperature, the With the increase in pressure, the emulsion stability of oil-based drilling fluids is in a downward trend, but the decline is not large. Relatively speaking, the influence of temperature on the emulsion stability of oil-based drilling fluids is greater than that of pressure. 展开更多
关键词 Oil-Based drilling Fluid EMULSIFICATION Demulsification Voltage testER High Temperature and High pressure
下载PDF
High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells 被引量:10
6
作者 Wang Fuhua Tan Xuechao +3 位作者 Wang Ruihe Sun Mingbo Wang Li Liu Jianghua 《Petroleum Science》 SCIE CAS CSCD 2012年第3期354-362,共9页
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines... To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site. 展开更多
关键词 High-density water-based drilling fluid rheological behavior CLAY high temperature high pressure linear fitting rheological model mathematical model
下载PDF
Rheological properties of oil-based drilling fluids at high temperature and high pressure 被引量:3
7
作者 赵胜英 鄢捷年 +1 位作者 舒勇 张洪霞 《Journal of Central South University》 SCIE EI CAS 2008年第S1期457-461,共5页
The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental ... The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations. 展开更多
关键词 OIL-BASED drilling FLUIDS HIGH temperature HIGH pressure RHEOLOGICAL property MATHEMATICAL model
下载PDF
Pressure relief, gas drainage and deformation effects on an overlying coal seam induced by drilling an extra-thin protective coal seam 被引量:11
8
作者 LIU Hai-bo CHENG Yuan-ping +2 位作者 SONG Jian-cheng SHANG Zheng-jie WANG Liang 《Mining Science and Technology》 EI CAS 2009年第6期724-729,共6页
Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological ... Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%. 展开更多
关键词 extra-thin protective coal seam drilling pressure relief expansion deformation gas drainage
下载PDF
Prediction of Dynamic Wellbore Pressure in Gasified Fluid Drilling 被引量:2
9
作者 Wang Zhiming Ping Liqiu Zou Ke 《Petroleum Science》 SCIE CAS CSCD 2007年第4期66-73,共8页
The basis of designing gasified drilling is to understand the behavior of gas/liquid two-phase flow in the wellbore. The equations of mass and momentum conservation and equation of fluid flow in porous media were used... The basis of designing gasified drilling is to understand the behavior of gas/liquid two-phase flow in the wellbore. The equations of mass and momentum conservation and equation of fluid flow in porous media were used to establish a dynamic model to predict wellbore pressure according to the study results of Ansari and Beggs-Brill on gas-liquid two-phase flow. The dynamic model was solved by the finite difference approach combined with the mechanistic steady state model. The mechanistic dynamic model was numerically implemented into a FORTRAN 90 computer program and could simulate the coupled flow of fluid in wellbore and reservoir. The dynamic model revealed the effects of wellhead back pressure and injection rate of gas/liquid on bottomhole pressure. The model was validated against full-scale experimental data, and its 5.0% of average relative error could satisfy the accuracy requirements in engineering design. 展开更多
关键词 Gasified fluid drilling dynamic model pressure prediction model validation
下载PDF
Managed Pressure Drilling Technology,As the Lost Piece of the Drilling Puzzle,Results in More Economical Benefits 被引量:1
10
作者 Arash Shadravan 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期74-74,共1页
The economics of drilling wells is important as we drill deeper wells whether offshore or onshore. Drilling-related problems,including stuck pipe,lost circulation,and excessive mud cost,show the need for better drilli... The economics of drilling wells is important as we drill deeper wells whether offshore or onshore. Drilling-related problems,including stuck pipe,lost circulation,and excessive mud cost,show the need for better drilling technology.If we can solve these problems,the economics of drilling the wells will improve,thus enabling the industry to drill wells that were previously uneconomical.Managed pressure drilling techniques,at one time,having 展开更多
关键词 managed pressure drilling underba-lanced drilling drilling technologies ECONOMY
下载PDF
A dynamic managed pressure well-control method for rapid treatment of gas kick in deepwater managed pressure drilling 被引量:1
11
作者 Hong-Wei Yang Jun Li +4 位作者 Ji-Wei Jiang Hui Zhang Bo-Yun Guo Geng Zhang Wang Chen 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2297-2313,共17页
During deepwater managed pressure drilling(MPD),the gas kick may occur in abnormally high-pressure formations.If the traditional well control method is adopted,the treatment time is long and the advantage of early gas... During deepwater managed pressure drilling(MPD),the gas kick may occur in abnormally high-pressure formations.If the traditional well control method is adopted,the treatment time is long and the advantage of early gas kick detection of MPD is lost.The dynamic managed pressure well-control(MPWC)method can be used to rapidly treat gas kick in deepwater MPD.In this paper,considering the effect of large-variable-diameter annulus and complex wellbore temperature in deepwater drilling,a simplified model of non-isothermal gas-liquid two-phase flow was established for dynamic deepwater MPWC simulation.Using this model,the response characteristics of outlet flow and wellhead backpressure were investigated.The results indicated that the gas fraction,outlet liquid flow rate,pit gain and wellhead backpressure presented complex alternating characteristics when gas moved upwards in the wellbore due to the large-variable-diameter annulus.The outlet liquid flow rate would be lower than the inlet flow rate and the pit gain would decrease before the gas moved to the wellhead.The variation trend of the wellhead backpressure was consistent with that of the pit gain.When the gas-liquid mixture passed through the choke,the expansion or compression of the gas caused part of the choke pressure drop to be supplemented or unloaded,delaying the response rate of the wellhead backpressure.The wellbore temperature,borehole diameter and seawater depth had different effects on outlet flow rate,pit gain and wellhead backpressure.This research could provide a new idea for well control methods in deepwater managed pressure drilling. 展开更多
关键词 Gas kick Managed pressure well-control Gas-liquid two-phase flow Wellhead backpressure Outlet flow characteristics Deepwater managed pressure drilling
下载PDF
Pre-Drilling Prediction Techniques on the High-Temperature High-Pressure Hydrocarbon Reservoirs Offshore Hainan Island,China 被引量:2
12
作者 ZHANG Hanyu LIU Huaishan +6 位作者 WU Shiguo SUN Jin YANG Chaoqun XIE Yangbing CHEN Chuanxu GAO Jinwei WANG Jiliang 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期72-82,共11页
Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve... Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island. 展开更多
关键词 pre-drilling prediction techniques formation PORE pressure high-temperature high-pressure hydrocarbon RESERVOIRS HAINAN Island Ying-Qiong Basin
下载PDF
Leak-Off Mechanism and Pressure Prediction for Shallow Sediments in Deepwater Drilling
13
作者 TAN Qiang DENG Jingen +2 位作者 SUN Jin LIU Wei YU Baohua 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期65-71,共7页
Deepwater sediments are prone to loss circulation in drilling due to a low overburden gradient. How to predict the magnitude of leak-off pressure more accurately is an important issue in the protection of drilling saf... Deepwater sediments are prone to loss circulation in drilling due to a low overburden gradient. How to predict the magnitude of leak-off pressure more accurately is an important issue in the protection of drilling safety and the reduction of drilling cost in deep water. Starting from the mechanical properties of a shallow formation and based on the basic theory of rock-soil mechanics, the stress distribution around a borehole was analyzed. It was found that the rock or soil on a borehole is in the plastic yield state before the effective tensile stress is generated, and the effective tangential and vertical stresses increase as the drilling fluid density increases; thus, tensile failure will not occur on the borehole wall. Based on the results of stress calculation, two mechanisms and leak-off pressure prediction models for shallow sediments in deepwater drilling were put forward, and the calculated values of these models were compared with the measured value of shallow leak-off pressure in actual drilling. The results show that the MHPS(minimum horizontal principle stress) model and the FIF(fracturing in formation) model can predict the lower and upper limits of leak-off pressure. The PLC(permeable lost circulation) model can comprehensively analyze the factors influencing permeable leakage and provide a theoretical basis for leak-off prevention and plugging in deepwater drilling. 展开更多
关键词 deepwater drilling SHALLOW SEDIMENTS leak-off MECHANISM leak-off pressure
下载PDF
Numerical Characterization of the Annular Flow Behavior and Pressure Loss in Deepwater Drilling Riser
14
作者 Chengwen Liu Lin Zhu +2 位作者 Xingru Wu Jian Liang Zhaomin Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第8期561-572,共12页
In drilling a deepwater well,the mud density window is narrow,which needs a precise pressure control to drill the well to its designed depth.Therefore,an accurate characterization of annular flow between the drilling ... In drilling a deepwater well,the mud density window is narrow,which needs a precise pressure control to drill the well to its designed depth.Therefore,an accurate characterization of annular flow between the drilling riser and drilling string is critical in well control and drilling safety.Many other factors influencing the change of drilling pressure that should be but have not been studied sufficiently.We used numerical method to simulate the process of drill string rotation and vibration in the riser to show that the rotation and transverse vibration of drill string can increase the axial velocity in the annulus,which results in the improvement of the flow field in the annulus,and the effect on pressure loss and its fluctuation amplitude.In addition,there are also multiple secondary flow vortices in the riser annulus under certain eccentricity conditions,which is different from the phenomenon in an ordinary wellbore.The findings of this research are critical in safely controlling well drilling operation in the deepwater environment. 展开更多
关键词 Deepwater drilling riser drill string movement pressure loss powerlaw fluid numerical simulation
下载PDF
Managed Pressure Drilling Technology:A Research on the Formation Adaptability
15
作者 Chenglong Wang Hexing Liu +3 位作者 Yaya Liu Xi Xia Fan Xiao Ningyu Zheng 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1865-1875,共11页
Existing pressure drilling technologies are based on different principles and display distinct characteristics in terms of control pressure and degree of formation adaptability.In the present study,the constant-bottom... Existing pressure drilling technologies are based on different principles and display distinct characteristics in terms of control pressure and degree of formation adaptability.In the present study,the constant-bottomhole-pressure(CBHP)and controlled-mud-level(CML)dual gradient drilling methods are considered.Models for the equivalent circulating density(ECD)are introduced for both drilling methods,taking into account the control pressure parameters(wellhead back pressure,displacement,mud level,etc.)and the relationship between the equivalent circulating density curve in the wellbore and two different types of pressure profiles in deep-water areas.The findings suggest that the main pressure control parameter for CBHP drilling is the wellhead back pressure,while for CML dual gradient drilling,it is the mud level.Two examples are considered(wells S1 and B2).For S1,CML dual gradient drilling only needs to adjust the ECD curve once to drill down to the target layer without risk.By comparison,CBHP drilling requires multiple adjustments to reach the target well depth avoiding a kick risk.In well B2,the CBHP method can drill down to the desired zone or even deeper after a single adjustment of the ECD curve.In contrast,CML dual-gradient drilling requires multiple adjustments to reach the target well depth(otherwise there is a risk of lost circulation).Therefore,CML dual-gradient drilling should be considered as a better choice for well S1,while CBHP drilling is more suitable for well B2. 展开更多
关键词 Deep-water drilling MPD technology ECD formation adaptability narrow pressure profile
下载PDF
Pore Water Pressure Arising during Pile Drilling in Sand
16
作者 Abdrabbo F. Khaled El-Sayed Gaaver 《Journal of Civil Engineering and Architecture》 2011年第4期331-340,共10页
The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the... The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the last decades. Types of imperfections either geotechnical or structural are documented in literature and well explained. Nevertheless, the influence of these imperfections in pile load calculations is still ambiguous. The work presented herein is devoted to study soil disturbance during construction of piles using continuous flight auger, CFA. The study of soil disturbance due to drilling needs some evidence. The source of this evidence is field observations collected from four different construction sites, which are documented in this paper. The study concluded that the disturbed zone of soil by CFA has a conical shape and extending laterally to a distance equivalent to ten times of the pile diameter around the auger at the cutting bits and has an inclined surface of4:1 (vertical : horizontal). Furthermore excess pore water pressure was induced in soil in the vicinity of pile drilling. Due to this excess pore water pressure, 3.5% to 6.5% of piles constructed by CFA showed percolation of water from the top of the piles through fresh concrete. Also, subsidence of fresh concrete in pile hole was recorded in few of the constructed piles. Pile loading tests showed that the percolation of water and/or subsidence of fresh concrete have not appreciable influence on the load-displacement characteristics of the piles. Moreover, percolation of water at pile heads. 展开更多
关键词 Pore water pressure pile drilling IMPERFECTIONS CFA water percolation
下载PDF
Temperature prediction model in multiphase flow considering phase transition in the drilling operations
17
作者 Yang Zhang Yong-An Li +2 位作者 Xiang-Wei Kong Hao Liu Teng-Fei Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1969-1979,共11页
The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed b... The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible. 展开更多
关键词 Managed pressure drilling Phase transition TEMPERATURE Gas-drilling mud two phase
下载PDF
Multi-objective optimization of oil well drilling using elitist non-dominated sorting genetic algorithm 被引量:12
18
作者 Chandan Guria Kiran K Goli Akhilendra K Pathak 《Petroleum Science》 SCIE CAS CSCD 2014年第1期97-110,共14页
A multi-objective optimization of oil well drilling has been carried out using a binary coded elitist non-dominated sorting genetic algorithm.A Louisiana offshore field with abnormal formation pressure is considered f... A multi-objective optimization of oil well drilling has been carried out using a binary coded elitist non-dominated sorting genetic algorithm.A Louisiana offshore field with abnormal formation pressure is considered for optimization.Several multi-objective optimization problems involving twoand three-objective functions were formulated and solved to fix optimal drilling variables.The important objectives are:(i) maximizing drilling depth,(ii) minimizing drilling time and (iii) minimizing drilling cost with fractional drill bit tooth wear as a constraint.Important time dependent decision variables are:(i) equivalent circulation mud density,(ii) drill bit rotation,(iii) weight on bit and (iv) Reynolds number function of circulating mud through drill bit nozzles.A set of non-dominated optimal Pareto frontier is obtained for the two-objective optimization problem whereas a non-dominated optimal Pareto surface is obtained for the three-objective optimization problem.Depending on the trade-offs involved,decision makers may select any point from the optimal Pareto frontier or optimal Pareto surface and hence corresponding values of the decision variables that may be selected for optimal drilling operation.For minimizing drilling time and drilling cost,the optimum values of the decision variables are needed to be kept at the higher values whereas the optimum values of decision variables are at the lower values for the maximization of drilling depth. 展开更多
关键词 drilling performance rate of penetration abnormal pore pressure genetic algorithm multi-objective optimization
下载PDF
Estimating rock properties using sound signal dominant frequencies during diamond core drilling operations 被引量:6
19
作者 Ch.Vijaya Kumar Harsha Vardhan +1 位作者 Ch.S.N.Murthy N.C.Karmakar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第4期850-859,共10页
In many engineering applications such as mining,geotechnical and petroleum industries,drilling operation is widely used.The drilling operation produces sound by-product,which could be helpful for preliminary estimatio... In many engineering applications such as mining,geotechnical and petroleum industries,drilling operation is widely used.The drilling operation produces sound by-product,which could be helpful for preliminary estimation of the rock properties.Nevertheless,determination of rock properties is very difficult by the conventional methods in terms of high accuracy,and thus it is expensive and timeconsuming.In this context,a new technique was developed based on the estimation of rock properties using dominant frequencies from sound pressure level generated during diamond core drilling operations.First,sound pressure level was recorded and sound signals of these sound frequencies were analyzed using fast Fourier transform (FFT).Rock drilling experiments were performed on five different types of rock samples using computer numerical control (CNC) drilling machine BMV 45 T20.Using simple linear regression analysis,mathematical equations were developed for various rock properties,i.e.uniaxial compressive strength,Brazilian tensile strength,density,and dominant frequencies of sound pressure level.The developed models can be utilized at early stage of design to predict rock properties. 展开更多
关键词 Rock properties SOUND pressure level Fast FOURIER TRANSFORM (FFT) SOUND signal Core drilling DOMINANT frequencies
下载PDF
Limit of crustal drilling depth 被引量:4
20
作者 Y.S.Zhao Z.J.Feng +3 位作者 B.P.Xi D.Yang W.G.Liang Z.J.Wan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第5期989-992,共4页
Deep drilling is becoming the direct and the most efficient means in exploiting deep mineral resources,facilitating to understanding the earthquake mechanism and performing other scientific researches on the Earth’s ... Deep drilling is becoming the direct and the most efficient means in exploiting deep mineral resources,facilitating to understanding the earthquake mechanism and performing other scientific researches on the Earth’s crust.In order to understand the limit of drilling depth in the Earth’s crust,we first conducted tests on granite samples with respect to the borehole deformation and stability under high temperature and high pressure using the triaxial servo-controlled rock testing system.Then the critical temperaturepressure coupling conditions that result in borehole instability are derived.Finally,based on the testing results obtained and the requirements for the threshold values of borehole deformations during deep drilling,the limit of drilling depth in the Earth’s crust is formulated with ground temperature. 展开更多
关键词 drilling well Limit of drilling depth High temperature High pressure Borehole instability
下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部