BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
According to the suitable assumption, the deformation process of external spline cold rolling is analyzed. By the graphing method, the slip-line field of plastically deforming area in process of external spline cold r...According to the suitable assumption, the deformation process of external spline cold rolling is analyzed. By the graphing method, the slip-line field of plastically deforming area in process of external spline cold rolling is set up. Different friction-conditions are used in different contact areas in order to realistically reflect the actual situation. The unit average pressure on contact surface of the rolling process is solved according to the stress filed theory of slip-line. And the formulae of the rolling-force and rolling-moment are established. The theoretical result is well consistent with the finite element analysis. A theoretical basis is provided for the precise forming process of spline cold rolling and the production of external splined shafts.展开更多
A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream su...A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.展开更多
According to the deformation characteristics of three-roll tube rolling, the existent disadvantages of traditional A Geleiyi and A Tselikov's formulas were objectively analyzed. An assumption approximate to actual si...According to the deformation characteristics of three-roll tube rolling, the existent disadvantages of traditional A Geleiyi and A Tselikov's formulas were objectively analyzed. An assumption approximate to actual situation was put forward. After suitable simplification, the energy method was adopted to establish velocity fields for permissive movement in deformed areas, and the calculation formula of average unit pressure for three-roll tube rolling was deduced. The values of theoretical calculation are basically consistent with the measured values of large-scale aluminum tube during on-site rolling process. The results proved that the formula is reasonable.展开更多
The computation model of shape and crown on 4-high CVC mill was established by combining the stream surface strip element method for analyzing three-dimensional plastic deformation of strip and the influence coefficie...The computation model of shape and crown on 4-high CVC mill was established by combining the stream surface strip element method for analyzing three-dimensional plastic deformation of strip and the influence coefficient method for elastic deformation of rolls, and the simulation of the shape and crown control on 4-high CVC hot strip mill was conducted. The simulated results indicate that the influence of the shifting of CVC work roll on shape and crown is very large, and the shifting of work roll can be used to preset shape and crown. The influence of the bending force of work roll on shape and crown is smaller, and it is suitable to use the bending force of work roll for shape and crown adjustment on line. With the increase of strip width, the exit crown of strip increases firstly and decreases then, and the roll gap becomes smoother increasingly. Meanwhile, the transverse difference of front tension stress decreases firstly and increases then.展开更多
The three-dimensional plastic deformations of strip are analyzed using the stream surface strip element method, the elastic deformations of rolls are analyzed using the influence coefficient method, the analyzing and ...The three-dimensional plastic deformations of strip are analyzed using the stream surface strip element method, the elastic deformations of rolls are analyzed using the influence coefficient method, the analyzing and computing model of shape and crown of 4-high mill was established by combining them, and the rolling process of 1660 mm hot strip continuous mills was simulated. The simulated results tally well with the experimental results. The modei and the method for simulation of shape analysis and control of hot strip mills were provided.展开更多
The coupled CFD-DEM method with the JKR(Johnson-Kendall-Roberts)model for describing the contact adhesion of dust to filter particles(FPs)is used to simulate the distribution pattern of dust particle deposition in the...The coupled CFD-DEM method with the JKR(Johnson-Kendall-Roberts)model for describing the contact adhesion of dust to filter particles(FPs)is used to simulate the distribution pattern of dust particle deposition in the granular bed filter(GBF)with multi-layer media.The minimum inlet flow velocity must meet the requirement that the contact probability between dust and FPs is in the high contact probability region.The air flow forms vortices on the leeward side of the FPs and changes abruptly at the intersection of different particle size FPs layers.Dust particles form large deposits at the intersection of the first and second layers and the different particle size filter layers.Dual element multilayer GBF can further optimize the bed structure by interlacing filter layers with different particle sizes.Compared with single particle size multi-layer GBF,the bed pressure drop is reduced by 40.24%-50.65%and the dust removal efficiency is increased by 21.93%-55.09%.展开更多
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金This project is supported by National Natural Science Foundation of China (No. 50675145)Provincial Key Project of Science and Technology of Shanxi, China (No. 2006031147)+1 种基金Provincial Innovation Project for Graduate Students of Shanxi, China (No. 20061027)Provincial Key Project for Studied-abroad Returnee of Shanxi, China.
文摘According to the suitable assumption, the deformation process of external spline cold rolling is analyzed. By the graphing method, the slip-line field of plastically deforming area in process of external spline cold rolling is set up. Different friction-conditions are used in different contact areas in order to realistically reflect the actual situation. The unit average pressure on contact surface of the rolling process is solved according to the stress filed theory of slip-line. And the formulae of the rolling-force and rolling-moment are established. The theoretical result is well consistent with the finite element analysis. A theoretical basis is provided for the precise forming process of spline cold rolling and the production of external splined shafts.
基金Sponsored by National Natural Science Foundation of China(50175095)Provincial Natural Science Foundation of Hebei of China(502173)
文摘A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.
基金Item Sponsored by Scientific and Technological Brainstorm Project for Ninth Five-Year Plan of China (95-528-02-02-02E)Provincial Natural Science Foundation of Shanxi Province of China (2006011060)
文摘According to the deformation characteristics of three-roll tube rolling, the existent disadvantages of traditional A Geleiyi and A Tselikov's formulas were objectively analyzed. An assumption approximate to actual situation was put forward. After suitable simplification, the energy method was adopted to establish velocity fields for permissive movement in deformed areas, and the calculation formula of average unit pressure for three-roll tube rolling was deduced. The values of theoretical calculation are basically consistent with the measured values of large-scale aluminum tube during on-site rolling process. The results proved that the formula is reasonable.
文摘The computation model of shape and crown on 4-high CVC mill was established by combining the stream surface strip element method for analyzing three-dimensional plastic deformation of strip and the influence coefficient method for elastic deformation of rolls, and the simulation of the shape and crown control on 4-high CVC hot strip mill was conducted. The simulated results indicate that the influence of the shifting of CVC work roll on shape and crown is very large, and the shifting of work roll can be used to preset shape and crown. The influence of the bending force of work roll on shape and crown is smaller, and it is suitable to use the bending force of work roll for shape and crown adjustment on line. With the increase of strip width, the exit crown of strip increases firstly and decreases then, and the roll gap becomes smoother increasingly. Meanwhile, the transverse difference of front tension stress decreases firstly and increases then.
基金This work was supported by the National Natural Science Foundation of China,No.50175095(Theory system and mechanism model of shape control of high precision plate and strip mills) 50374058(Stream surface strip element method and its application in shape control of hot rolling plate and strip).
文摘The three-dimensional plastic deformations of strip are analyzed using the stream surface strip element method, the elastic deformations of rolls are analyzed using the influence coefficient method, the analyzing and computing model of shape and crown of 4-high mill was established by combining them, and the rolling process of 1660 mm hot strip continuous mills was simulated. The simulated results tally well with the experimental results. The modei and the method for simulation of shape analysis and control of hot strip mills were provided.
基金supported by National Key Research and Development Program of China(No.2018YFB0606104).
文摘The coupled CFD-DEM method with the JKR(Johnson-Kendall-Roberts)model for describing the contact adhesion of dust to filter particles(FPs)is used to simulate the distribution pattern of dust particle deposition in the granular bed filter(GBF)with multi-layer media.The minimum inlet flow velocity must meet the requirement that the contact probability between dust and FPs is in the high contact probability region.The air flow forms vortices on the leeward side of the FPs and changes abruptly at the intersection of different particle size FPs layers.Dust particles form large deposits at the intersection of the first and second layers and the different particle size filter layers.Dual element multilayer GBF can further optimize the bed structure by interlacing filter layers with different particle sizes.Compared with single particle size multi-layer GBF,the bed pressure drop is reduced by 40.24%-50.65%and the dust removal efficiency is increased by 21.93%-55.09%.